The article proposes the design of a test bench simulator to test a parallel hybrid propulsion architecture for aeronautical applications. The virtual test bench simulates, in a scaled version, the real test bench, designed for a power of about 0.4 MW. After presenting the architecture of the real propulsion system, the virtual test bench is described. The real system is basically composed by a paralleled electric motor and thermal engine which provide mechanical power to the propeller. Saving cost and volume the test bench is composed by electric motors simulates the behaviors of the real propulsion system despite their differences. The dynamic relationships expressing the transmission of torque between the components, and the method of down-sizing the power delivered are highlighted. Particular attention is given to the real inertia actions that must be simulated on the virtual test bench. An application of the proposed methodology is then presented through the simulation of the take-off phase, and the torque time histories, angular velocities and powers generated on the virtual test bench are used to verify the corresponding time histories expected in the real system.