The most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in individuals with cystic fibrosis, ⌬F508, causes retention of ⌬F508-CFTR in the endoplasmic reticulum and leads to the absence of CFTR Cl ؊ channels in the apical plasma membrane. Rescue of ⌬F508-CFTR by reduced temperature or chemical means reveals that the ⌬F508 mutation reduces the half-life of ⌬F508-CFTR in the apical plasma membrane. Because ⌬F508-CFTR retains some Cl ؊ channel activity, increased expression of ⌬F508-CFTR in the apical membrane could serve as a potential therapeutic approach for cystic fibrosis. However, little is known about the mechanisms responsible for the short apical membrane half-life of ⌬F508-CFTR in polarized human airway epithelial cells. Accordingly, the goal of this study was to determine the cellular defects in the trafficking of rescued ⌬F508-CFTR that lead to the decreased apical membrane half-life of ⌬F508-CFTR in polarized human airway epithelial cells. We report that in polarized human airway epithelial cells (CFBE41o؊) the ⌬F508 mutation increased endocytosis of CFTR from the apical membrane without causing a global endocytic defect or affecting the endocytic recycling of CFTR in the Rab11a-specific apical recycling compartment.The cystic fibrosis transmembrane conductance regulator (CFTR) 2 is an ATP binding cassette (ABC) transporter and a cAMP-regulated Cl Ϫ channel that mediates transepithelial Cl Ϫ transport in the airways, intestine, pancreas, testis, and other tissues (1-3). Cystic fibrosis (CF), a lethal genetic disease, is caused by mutations in the CFTR gene (1, 2). The most common mutation in CFTR is ⌬F508 (4, 5). ⌬F508-CFTR does not fold properly, and most of the protein is retained within the endoplasmic reticulum (ER) where it is subsequently degraded (5, 6). Several studies suggest that the ER retention of ⌬F508-CFTR is not complete, and some ⌬F508-CFTR is constitutively expressed in the plasma membrane of primary epithelial cells from individuals homozygous for the ⌬F508 mutation (7-10). Because ⌬F508-CFTR retains some Cl Ϫ channel activity when expressed in the plasma membrane (5,6,(11)(12)(13)(14), it would be desirable to increase the expression of ⌬F508-CFTR in the plasma membrane to alleviate the symptoms in CF patients. The trafficking of ⌬F508-CFTR to the plasma membrane can be increased by chemical means or reduced temperature (15-21). Yet, functional and biochemical studies in heterologous cell lines demonstrate that rescued ⌬F508-CFTR has a greatly reduced stability or halflife in the post-ER compartments, including the plasma membrane (13,(22)(23)(24). Very little is known about the apical membrane half-life of rescued ⌬F508-CFTR in polarized human airway epithelial cells. A recent study demonstrates that the functional stability of ⌬F508-CFTR in the apical membrane of differentiated respiratory epithelial cells derived from nasal polyps from individuals homozygous for the ⌬F508 mutation is decreased compared with WT-CFTR (25). Furthermore, the bioc...
Neonicotinoid pesticides can negatively affect bee colonies, but the behavioral mechanisms by which these compounds impair colony growth remain unclear. Here, we investigate imidacloprid’s effects on bumblebee worker behavior within the nest, using an automated, robotic platform for continuous, multicolony monitoring of uniquely identified workers. We find that exposure to field-realistic levels of imidacloprid impairs nursing and alters social and spatial dynamics within nests, but that these effects vary substantially with time of day. In the field, imidacloprid impairs colony thermoregulation, including the construction of an insulating wax canopy. Our results show that neonicotinoids induce widespread disruption of within-nest worker behavior that may contribute to impaired growth, highlighting the potential of automated techniques for characterizing the multifaceted, dynamic impacts of stressors on behavior in bee colonies.
The tetraspanin CD63 resides in late endosomes, lysosomes, secretory vesicles, and at the plasma membrane, and it moves among these compartments. We find that CD63 is present also in tubulovesicular elements, the intracellular compartments that contain the H,K-ATPase in unstimulated gastric parietal cells. The H,KATPase -subunit and CD63 colocalize in parietal cells and form a complex that can be coprecipitated. The -subunit and CD63 also interact when they are coexpressed in COS-7 cells. Furthermore, expression with CD63 induces the redistribution of the -subunit from the cell surface to CD63 ؉ intracellular compartments. Immunofluorescence and biochemical experiments reveal that this redistribution occurs by enhanced endocytosis of H,K-ATPase -subunit complexed with CD63. Coexpression of the -subunit with mutant CD63 polypeptides demonstrates that the enhanced internalization of the -subunit depends on the capacity of CD63 to interact with adaptor protein complexes 2 and 3. These data indicate that CD63 serves as an adaptor protein that links its interaction partners to the endocytic machinery of the cell and suggest a previously uncharacterized protein-trafficking role for the tetraspanins.
Engineering new tissues using cell transplantation may provide a valuable tool for reconstructive surgery applications. Chondrocyte transplantation in particular has been successfully used to engineer new tissue masses due to the low metabolic requirements of these cells. However, the engineered cartilaginous tissue is too rigid for many soft tissue applications. We propose that hybrid tissue engineered from chondrocytes and smooth muscle cells could reflect mechanical properties intermediate between these two cell types. In this study, rat aortic smooth muscle cells and pig auricular chondrocytes were co-cultured on polyglycolic acid fiber-based matrices to address this hypothesis. Mixed cell suspensions were seeded by agitating the polymer matrices and a cell suspension with an orbital shaker. After seeding, cell-polymer constructs were cultured in stirred bioreactors for 8 weeks. The cell density and extracellular matrix (collagen, elastin, and glycosaminoglycan) content of the engineered tissues were determined biochemically. After 8 weeks in culture, the hybrid tissue had a high cell density (5.8 x 108 cells/cm(3)), and elastin (519 microg/g wet tissue sample), collagen (272 microg/g wet tissue sample), and glycosaminoglycan (GAG; 10 microg/g wet tissue sample) content. Mechanical testing indicated the compressive modulus of the hybrid tissues after 8 weeks to be 40.8 +/- 4.1 kPa and the equilibrium compressive modulus to be 8.4 +/- 0.8 kPa. Thus, these hybrid tissues exhibited intermediate stiffness; they were less stiff than native cartilage but stiffer than native smooth muscle tissue. This tissue engineering approach may be useful to engineer tissues for a variety of reconstructive surgery applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.