Vascular endothelial growth factor (VEGF) is one of the most important inducers of angiogenesis, therefore blocking angiogenesis has led to great promise in the treatment of various cancers and inflammatory diseases. VEGF, expressed in response to soluble mediators such as cytokines and growth factors, is important in the physiological development of blood vessels as well as development of vessels in tumors. In cancer patients VEGF levels are increased, and the expression of VEGF is associated with poor prognosis in diseases. VEGF is a mediator of angiogenesis and inflammation which are closely integrated processes in a number of physiological and pathological conditions including obesity, psoriasis, autoimmune diseases and tumor. Mast cells can be activated by anti-IgE to release potent mediators of inflammation and can also respond to bacterial or viral antigens, cytokines, growth factors and hormones, leading to differential release of distinct mediators without degranulation. Substance P strongly induces VEGF in mast cells, and IL-33 contributes to the stimulation and release of VEGF in human mast cells in a dose-dependent manner and acts synergistically in combination with Substance P. Here we report a strong link between VEGF and mast cells and we depict their role in inflammation and immunity.
SummaryCigarette smoking has deleterious effects on the musculo-skeletal system. The loss of bone mineral content and increased incidence of fractures are the best known negative consequences. The pathogenesis is complex, due to direct toxic effects on osteoblasts/osteoclasts activity of nicotine, and indirect actions on sex and adrenocortical hormones, vitamin D, intestinal calcium absorption, vessels and oxygen supply. Smoking may favour the onset or aggravate the progression of rheumatoid arthritis and back pain. Negative influences have been observed on muscle and on tendons. Moreover, smoking habit is associated to a number of short term post-operative complications and higher resource consumption. Smoking cessation is highly advisable with positive effects on the bone metabolism on the long term. More positive and immediate results can be obtained in patients submitted to orthopedic surgery: the healing process is improved, the frequency of complications is reduced, and the length of hospital stay is shortened.
Cigarette smoking has deleterious effects on the musculo-skeletal system. The loss of bone mineral content and increased incidence of fractures are the best known negative consequences. The pathogenesis is complex, due to direct toxic effects on osteoblasts/osteoclasts activity of nicotine, and indirect actions on sex and adrenocortical hormones, vitamin D, intestinal calcium absorption, vessels and oxygen supply. Smoking may favour the onset or aggravate the progression of rheumatoid arthritis and back pain. Negative influences have been observed on muscle and on tendons. Moreover, smoking habit is associated to a number of short term post-operative complications and higher resource consumption. Smoking cessation is highly advisable with positive effects on the bone metabolism on the long term. More positive and immediate results can be obtained in patients submitted to orthopedic surgery: the healing process is improved, the frequency of complications is reduced, and the length of hospital stay is shortened.
Stem cells have been proposed as a powerful tool in the treatment of several human diseases, both for their ability to represent a source of new cells to replace those lost due to tissue injuries or degenerative diseases, and for the ability of produce trophic molecules able to minimize damage and promote recovery in the injured tissue. Different cell types, such as embryonic, fetal or adult stem cells, human fetal tissues and genetically engineered cell lines, have been tested for their ability to replace damaged cells and to restore the tissue function after transplantation. Amniotic fluid -derived Stem cells (AFS) are considered a novel resource for cell transplantation therapy, due to their high renewal capacity, the "in vitro" expression of embryonic cell lineage markers, and the ability to differentiate in tissues derived from all the three embryonic layers. Moreover, AFS do not produce teratomas when transplanted into animals and are characterized by a low antigenicity, which could represent an advantage for cell transplantation or cell replacement therapy. The present review focuses on the biological features of AFS, and on their potential use in the treatment of pathological conditions such as ischemic brain injury and bone damages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.