In recent years, human and wildlife monitoring studies have identified perfluoroalkyl acids (PFAA) worldwide. This has led to efforts to better understand the hazards that may be inherent in these compounds, as well as the global distribution of the PFAAs. Much attention has focused on understanding the toxicology of the two most widely known PFAAs, perfluorooctanoic acid, and perfluorooctane sulfate. More recently, research was extended to other PFAAs. There has been substantial progress in understanding additional aspects of the toxicology of these compounds, particularly related to the developmental toxicity, immunotoxicity, hepatotoxicity, and the potential modes of action. This review provides an overview of the recent advances in the toxicology and mode of action for PFAAs, and of the monitoring data now available for the environment, wildlife, and humans. Several avenues of research are proposed that would further our understanding of this class of compounds.
These data suggest that environmental exposure to lead may delay growth and pubertal development in girls, although confirmation is warranted in prospective studies.
Perfluorooctanesulfonate and its salts (PFOS) are derived from perfluorooctanesulfonyl fluoride, the basic chemical building block for many sulfonyl-based fluorochemicals used as surfactants and for their repellent properties. PFOS is highly persistent in the environment and has a long serum elimination half-life in both animals and humans. PFOS has been detected globally in the environment and in blood serum in various populations throughout the world, with the majority of human sampling done in the United States and Japan. The mechanisms and pathways leading to the presence of PFOS in human blood are not well characterized but likely involve both direct exposures to PFOS or chemicals and materials that can degrade to PFOS, either in the environment or from industrial and commercial uses. In 2000 the 3M Company, a major manufacturer, announced a phaseout of PFOS-related materials. Animal studies indicate that PFOS is well absorbed orally and distributes mainly in blood serum and the liver. Several repeat-dose toxicology studies in animals consistently demonstrated that the liver is the primary target organ. In addition there is a steep dose response for mortality in sexually mature rats and primates as well as in neonatal rats and mice exposed in utero. Several biomonitoring research needs that have been identified on PFOS include additional data from general populations pertaining to other matrices besides blood; matched serum and urine samples from humans and research animals; and comparison of whole blood, serum, and plasma concentrations from the same individuals.
Objective
Outline the knowledge gaps and research priorities identified by a broad-base
of stakeholders involved in the planning and participation of an international
conference and research agenda workshop on isocyanates and human health held in Potomac,
Maryland in April 2013.
Methods
A multi-modal iterative approach was employed for data collection including
pre-conference surveys, review of a 2001 consensus conference on isocyanates, oral and
poster presentations, focused break-out sessions, panel discussions and post-conference
research agenda workshop.
Results
Participants included representatives of consumer and worker health, health
professionals, regulatory agencies, academic and industry scientists, labor, and trade
associations.
Conclusions
Recommendations were summarized regarding knowledge gaps and research
priorities in the following areas: worker and consumer exposures; toxicology, animal
models, and biomarkers; human cancer risk; environmental exposure and monitoring; and
respiratory epidemiology and disease, and occupational health surveillance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.