Continuous respiratory monitoring is important to assess adequate ventilation. We present a fiber optic-based smart textile for respiratory monitoring able to work during Magnetic Resonance (MR) examinations. The system is based on the conversion of chest wall movements into strain of two fiber Bragg grating (FBG) sensors, placed on the upper thorax (UT). FBGs are glued on the textile by an adhesive silicon rubber. To increase the system sensitivity, the FBGs positioning was led by preliminary experiments performed using an optoelectronic system: FBGs placed on the chest surface experienced the largest strain during breathing. System performances, in terms of respiratory period (TR), duration of inspiratory (TI) and expiratory (TE) phases, as well as left and right UT volumes, were assessed on four healthy volunteers. The comparison of results obtained by the proposed system and an optoelectronic plethysmography highlights the high accuracy in the estimation of TR, TI, and TE: Bland-Altman analysis shows mean of difference values lower than 0.045 s, 0.33 s, and 0.35 s for TR, TI, and TE, respectively. The mean difference of UT volumes between the two systems is about 8.3%. The promising results foster further development of the system to allow routine use during MR examinations.
Temperature distribution monitoring in tissue undergoing laser ablation (LA) could be beneficial for improving treatment outcomes. Among several thermometric techniques employed in LA, fiber Bragg grating (FBG) sensors show valuable characteristics, although their sensitivity to strain entails measurement error for patient respiratory movements. Our work describes a solution to overcome this issue by housing an FBG in a surgical needle. The metrological properties of the probes were assessed in terms of thermal sensitivity (0.027 nm °C−1 versus 0.010 nm °C−1 for epoxy liquid encapsulated probe and thermal paste one, respectively) and response time (about 100 ms) and compared with properties of nonencapsulated FBG (sensitivity of 0.010 nm °C−1, response time of 43 ms). The error due to the strain caused by liver movements, simulating a typical respiratory pattern, was assessed: the strain induces a probes output error less than 0.5 °C, which is negligible when compared to the response of nonencapsulated FBG (2.5 °C). The metallic needle entails a measurement error, called artifact, due to direct absorption of the laser radiation. The analysis of the artifact was performed by employing the probes for temperature monitoring on liver undergoing LA. Experiments were performed at two laser powers (i.e., 2 W and 4 W) and at nine distances between the probes and the laser applicator. The artifact decreases with the distance and increases with the power: it exceeds 10 °C at 4 W, when the encapsulated probes are placed at 3.6 mm and 0 deg from the applicator, and it is lower than 1 °C for distance higher than 5 mm and angle higher than 30 deg.
Comfortable and easy to wear smart textiles have gained popularity for continuous respiratory monitoring. Among different emerging technologies, smart textiles based on fiber optic sensors (FOSs) have several advantages, like Magnetic Resonance (MR)-compatibility and good metrological properties. In this paper we report on the development and assessment of an MR-compatible smart textiles based on FOSs for respiratory monitoring. The system consists of six fiber Bragg grating (FBG) sensors glued on the textile to monitor six compartments of the chest wall (i.e., right and left upper thorax, right and left abdominal rib cage, and right and left abdomen). This solution allows monitoring both global respiratory parameters and each compartment volume change. The system converts thoracic movements into strain measured by the FBGs. The positioning of the FBGs was optimized by experiments performed using an optoelectronic system. The feasibility of the smart textile was assessed on 6 healthy volunteers. Experimental data were compared to the ones estimated by an optoelectronic plethysmography used as reference. Promising results were obtained on both breathing period (maximum percentage error is 1.14%), inspiratory and expiratory period, as well as on total volume change (mean percentage difference between the two systems was ~14%). The Bland-Altman analysis shows a satisfactory accuracy for the parameters under investigation. The proposed system is safe and non-invasive, MR-compatible, and allows monitoring compartmental volumes.
Hyperthermal techniques are spreading as an alternative to conventional surgery for cancer removal. A real-time temperature feedback can be used to adjust the treatment settings, in order to improve the clinical outcomes. In this paper, we experimentally assessed the feasibility for distributed temperature monitoring of a custom probe, which consists of a needle embedding six fiber Bragg gratings (FBGs). Since FBGs are also sensitive to strain, we focused on the analysis of the measurement error (artifact) caused by respiratory movements. We assessed the artifact both on ex vivo pig liver and lung (by mimicking the movement of these organs caused by respiration) and on in vivo trial on pig liver. Lastly, we proposed an algorithm to detect and minimize the artifact during ex vivo liver laser ablation. During both ex vivo and in vivo trials, the probe insertion within the organ was easy and safe. The artifact was significant (up to 3 °C), but the correction algorithm allows minimizing the error. The main advantages of the proposed probe are: 1) spatially resolved temperature monitoring (in six points of the tissue by inserting a single needle) and 2) the needle is magnetic resonance (MR)-compatible, hence can be used during MR-guided procedure. Even if the model is close to humans, further trials are required to investigate the feasibility of the probe for clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.