Advanced battery management systems rely on mathematical models to guarantee optimal functioning of Lithium-ion batteries. The Pseudo-Two Dimensional (P2D) model is a very detailed electrochemical model suitable for simulations. On the other side, its complexity prevents its usage in control and state estimation. Therefore, it is more appropriate the use of simplified electrochemical models such as the Single Particle Model with electrolyte dynamics (SPMe), which exhibits good adherence to real data when suitably calibrated. This work focuses on a Fisher-based optimal experimental design for identifying the SPMe parameters. The proposed approach relies on a nonlinear optimization to minimize the covariance parameters matrix.At first, the parameters are estimated by considering the SPMe as the real plant.Subsequently, a more realistic scenario is considered where the P2D model is used 1 arXiv:1811.08656v2 [cs.SY] 30 Sep 2019 to reproduce a real battery behavior. Results show the effectiveness of the optimal experimental design when compared to standard strategies.
One of the most crucial challenges faced by the Liion battery community concerns the search for the minimum time charging without irreversibly damaging the cells. This can fall into solving large-scale nonlinear optimal control problems according to a battery model. Within this context, several model-based techniques have been proposed in the literature. However, the effectiveness of such strategies is significantly limited by model complexity and uncertainty. Additionally, it is difficult to track parameters related to aging and re-tune the model-based control policy. With the aim of overcoming these limitations, in this paper we propose a fast-charging strategy subject to safety constraints which relies on a modelfree reinforcement learning framework. In particular, we focus on the policy gradient-based actor-critic algorithm, i.e., deep deterministic policy gradient (DDPG), in order to deal with continuous sets of actions and sets. The validity of the proposal is assessed in simulation when a reduced electrochemical model is considered as the real plant. Finally, the online adaptability of the proposed strategy in response to variations of the environment parameters is highlighted with consideration of state reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.