Diabetes often correlates with tau phosphorylation and the development of Alzheimer's disease. Both are associated with brain cholinergic dysfunction that could benefit from nerve growth factor (NGF)-based therapies. Electroacupuncture (EA) improves brain NGF availability and action. Here we assessed the variations of NGF and tau phosphorylation in the cortex and hippocampus, as well as the expression of choline acetyltransferase in the basal forebrain following diabetes induction and EA in adult rats. We found that EA counteracts diabetes-associated tau hyperphosphorylation and decreases in NGF and choline acetyltransferase, suggesting a possible beneficial effect of EA on brain cholinergic system in diabetes.
SummaryRecent data indicate that age-related N-methyl-D-aspartate receptor (NMDAR) transmission impairment is correlated with the reduction in serine racemase (SR) expression and D-serine content. As apoptosis is associated with several diseases and conditions that generally occur with age, we investigated the modulation of SR ⁄ D-serine pathway during neuronal apoptosis and its impact on survival. We found that in cerebellar granule neurons (CGNs), undergoing apoptosis SR/D-serine pathway is crucially regulated. In the early phase of apoptosis, the expression of SR is reduced, both at the protein and RNA level through pathways, upstream of caspase activation, involving ubiquitin proteasome system (UPS) and c-Jun N-terminal kinases (JNKs). Forced expression of SR, together with treatment with NMDA and D-serine, blocks neuronal death, whereas pharmacological inhibition and Sh-RNA-mediated suppression of endogenous SR exacerbate neuronal death. In the late phase of apoptosis, the increased expression of SR contribute to the last, NMDAR-mediated, wave of cell death. These findings are relevant to our understanding of neuronal apoptosis and NMDAR activity regulation, raising further questions as to the role of SR/D-serine in those neuro-pathophysiological processes, such as aging and neurodegenerative diseases characterized by a convergence of apoptotic mechanisms and NMDAR dysfunction.
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. a b s t r a c tDifferent pathological tau species are involved in memory loss in Alzheimer's disease, the most common cause of dementia among older people. However, little is known about how tau pathology directly affects adult hippocampal neurogenesis, a unique form of structural plasticity implicated in hippocampusdependent spatial learning and mood-related behavior. To this aim, we generated a transgenic mouse model conditionally expressing a pathological tau fragment (26e230 aa of the longest human tau isoform, or N-tau) in nestin-positive stem/progenitor cells. We found that N-tau reduced the proliferation of progenitor cells in the adult dentate gyrus, reduced cell survival and increased cell death by a caspase3eindependent mechanism, and recruited microglia. Although the number of terminally differentiated neurons was reduced, these showed an increased dendritic arborization and spine density. This resulted in an increase of anxiety-related behavior and an impairment of episodic-like memory, whereas less complex forms of spatial learning remained unaltered. Understanding how pathological tau species directly affect neurogenesis is important for developing potential therapeutic strategies to direct neurogenic instructive cues for hippocampal function repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.