Total tyrosine kinase activity is often elevated in both cytosolic and membrane fractions of malignant breast tissue and correlates with a decrease in disease-free survival. Breast tumor kinase (Brk; protein tyrosine kinase 6) is a soluble tyrosine kinase that was cloned from a metastatic breast tumor and found to be overexpressed in a majority of breast tumors. Herein, we show that Brk is overexpressed in 86% of invasive ductal breast tumors and coexpressed with ErbB family members in breast cancer cell lines. Additionally, the ErbB ligand, heregulin, activates Brk kinase activity. Knockdown of Brk by stable expression of short hairpin RNA (shRNA) in T47D breast cancer cells decreases proliferation and blocks epidermal growth factor (EGF)-and heregulininduced activation of Rac GTPase, extracellular signalregulated kinase (ERK) 5, and p38 mitogen-activated protein kinase (MAPK) but not Akt, ERK1/2, or c-Jun NH 2 -terminal kinase. Furthermore, EGF-and heregulin-induced cyclin D1 expression is dependent on p38 signaling and inhibited by Brk shRNA knockdown. The myocyte enhancer factor 2 transcription factor target of p38 MAPK and ERK5 signaling is also sensitive to altered Brk expression. Finally, heregulin-induced migration of T47D cells requires p38 MAPK activity and is blocked by Brk knockdown. These results place Brk in a novel signaling pathway downstream of ErbB receptors and upstream of Rac, p38 MAPK, and ERK5 and establish the ErbBBrk-Rac-p38 MAPK pathway as a critical mediator of breast cancer cell migration. [Cancer Res 2007;67(9):4199-209]
Progesterone receptors (PRs) mediate proliferation during breast development and contribute to breast cancer progression, in part by synergizing with peptide growth factors. We have previously identified PR Ser294 as a key site for direct regulation of PR location, activity, and turnover in response to phosphorylation events. Herein, we sought to better understand how hormonal cross talk alters PR function. We demonstrate that progestins (R5020 and RU486) induce rapid (15 min) sumoylation of PR Lys388; sumoylation represses PR transcriptional activity on selected progesterone response element-driven and endogenous promoters and retards ligand-induced PR down-regulation. Consistent with this finding, we show that stabilized but weakly active phospho-mutant S294A PRs are heavily sumoylated. Conversely, desumoylated PR, created by mutation of PR Lys388 (K388R) or by overexpression of sentrin (SUMO)-specific protease desumoylating enzymes, are hypersensitive to low progestin concentrations. Combination of K388R and S294A mutations (KRSA double-mutant PR) rescues both transcription and turnover of impaired phospho-mutant (S294A) receptors. Notably, phosphorylation events antagonize PR-B but not PR-A sumoylation. Treatment of cells with epidermal growth factor or transient expression of activated mitogen-activated protein/ERK kinase kinase or cyclin-dependent protein kinase 2 induces PR-B Ser294 phosphorylation and blocks PR-B sumoylation, thereby derepressing receptor activity; PR-A is resistant to these events. Modulation of reversible PR sumoylation in response to diverse hormonal signals provides a mechanism for rapid isoform-specific changes in hormone responsiveness. In the context of elevated protein kinase activities, such as during mammary gland development or breast cancer progression, phosphorylated PR-B may be undersumoylated, transcriptionally hyperactive, and unstable/undetectable.
Progesterone and progesterone receptors (PR) are essential for the development and cyclical regulation of hormone-responsive tissues including the breast and reproductive tract. Altered functions of PR isoforms contribute to the pathogenesis of tumors that arise in these tissues. In the breast, progesterone acts in concert with estrogen to promote proliferative and pro-survival gene programs. In sharp contrast, progesterone inhibits estrogen-driven growth in the uterus and protects the ovary from neoplastic transformation. Progesterone-dependent actions and associated biology in diverse tissues and tumors are mediated by two progesterone receptor isoforms, PR-A and PR-B. These isoforms are subject to altered transcriptional activity or expression levels, differential cross-talk with growth factor signaling pathways, and distinct post-translational modifications and cofactor binding partners. Herein, we summarize and discuss the recent literature focused on progesterone and PR isoform-specific actions in breast, uterine, and ovarian cancers. Understanding the complexity of context-dependent PR actions in these tissues is critical to developing new models that will allow us to advance our knowledge base with the goal of revealing novel and efficacious therapeutic regimens for these hormone-responsive diseases.
IntroductionProgesterone receptors (PR) are emerging as important breast cancer drivers. Phosphorylation events common to breast cancer cells impact PR transcriptional activity, in part by direct phosphorylation. PR-B but not PR-A isoforms are phosphorylated on Ser294 by mitogen activated protein kinase (MAPK) and cyclin dependent kinase 2 (CDK2). Phospho-Ser294 PRs are resistant to ligand-dependent Lys388 SUMOylation (that is, a repressive modification). Antagonism of PR small ubiquitin-like modifier (SUMO)ylation by mitogenic protein kinases suggests a mechanism for derepression (that is, transcriptional activation) of target genes. As a broad range of PR protein expression is observed clinically, a PR gene signature would provide a valuable marker of PR contribution to early breast cancer progression.MethodsGlobal gene expression patterns were measured in T47D and MCF-7 breast cancer cells expressing either wild-type (SUMOylation-capable) or K388R (SUMOylation-deficient) PRs and subjected to pathway analysis. Gene sets were validated by RT-qPCR. Recruitment of coregulators and histone methylation levels were determined by chromatin immunoprecipitation. Changes in cell proliferation and survival were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and western blotting. Finally, human breast tumor cohort datasets were probed to identify PR-associated gene signatures; metagene analysis was employed to define survival rates in patients whose tumors express a PR gene signature.Results'SUMO-sensitive' PR target genes primarily include genes required for proliferative and pro-survival signaling. DeSUMOylated K388R receptors are preferentially recruited to enhancer regions of derepressed genes (that is, MSX2, RGS2, MAP1A, and PDK4) with the steroid receptor coactivator, CREB-(cAMP-response element-binding protein)-binding protein (CBP), and mixed lineage leukemia 2 (MLL2), a histone methyltransferase mediator of nucleosome remodeling. PR SUMOylation blocks these events, suggesting that SUMO modification of PR prevents interactions with mediators of early chromatin remodeling at 'closed' enhancer regions. SUMO-deficient (phospho-Ser294) PR gene signatures are significantly associated with human epidermal growth factor 2 (ERBB2)-positive luminal breast tumors and predictive of early metastasis and shortened survival. Treatment with antiprogestin or MEK inhibitor abrogated expression of SUMO-sensitive PR target-genes and inhibited proliferation in BT-474 (estrogen receptor (ER)+/PR+/ERBB2+) breast cancer cells.ConclusionsWe conclude that reversible PR SUMOylation/deSUMOylation profoundly alters target gene selection in breast cancer cells. Phosphorylation-induced PR deSUMOylation favors a permissive chromatin environment via recruitment of CBP and MLL2. Patients whose ER+/PR+ tumors are driven by hyperactive (that is, derepressed) phospho-PRs may benefit from endocrine (antiestrogen) therapies that contain an antiprogestin.
Human progesterone receptors (PR) rapidly activate cytosolic signaling pathways, in addition to their classical function as ligand-activated transcription factors. Using ER+/PR-B+ T47D breast cancer cells, we probed the role of progestin-stimulated rapid PR signaling in the transcriptional regulation of target genes involved in breast cancer cell proliferation. Epidermal growth factor receptor (EGFR) was rapidly activated after a 10-min treatment with R5020. Progestin induced EGFR-, c-Src-, and MAPK-dependent phosphorylation of PR-B on the MAPK consensus site, Ser345. Ser345-phosphorylated PR-B receptors strongly associated with specificity protein 1 (Sp1) transcription factors to regulate PR cell cycle (p21) and growth-promoting (EGFR) target genes whose promoters lack canonical progesterone response element sequences. Inhibitors of EGFR, c-Src, or MAPK activities blocked PR tethering to Sp1 and progestin-stimulated S-phase entry. Mutant PR-B receptors defective for c-Src binding (mPro) were not phosphorylated on Ser345 in response to progestin and failed to interact with Sp1. Hormone-induced complexes containing Sp1 and wild-type PR-B, but not S345A or mPro PR-B, were recruited to Sp1 sites within the endogenous p21 promoter. Progestin-induced S-phase entry was attenuated in T47D cells containing wild-type PR-B and treated with EGFR, c-Src, or MAPK kinase inhibitors or in T47D cells stably expressing mPro or mutant DNA-binding domain PR-B. In sum, rapid progestin-activated PR signaling leads to PR Ser345 phosphorylation and tethering to Sp1. These events are critical for progestin-stimulated regulation of Sp1 target genes and breast cancer cell proliferation. Our data demonstrate the therapeutic potential for PR-targeted breast cancer treatment by exploiting multiple nodes along the PR signaling pathway, including PR-B, EGFR, c-Src, MAPK, or Sp1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.