Summary
The dynamic and reversible acetylation of proteins catalyzed by histone acetyltransferases (HATs) and histone deacetylases (HDACs) is a major epigenetic regulatory mechanism of gene transcription 1 associated with multiple diseases. While HDAC inhibitors are approved to treat certain cancers, progress on the development of drug-like HAT inhibitors has lagged 2. The HAT paralogs p300 and CBP (p300/CBP) are key transcriptional co-activators essential for a multitude of cellular processes and also implicated in human pathological conditions, including cancer 3. Current p300/CBP HAT domain inhibitors including natural products, 4 bi-substrate analogs (Lys-CoA) 5 and the widely utilized C646 6, 7 lack potency or selectivity. Here, we describe A-485, a potent, selective and drug-like p300/CBP catalytic inhibitor. We show the first high resolution (1.95Å) co-crystal structure of a small molecule bound to the catalytic active site of p300 and demonstrate that A-485 is acetyl-CoA competitive. A-485 selectively inhibited proliferation across lineage-specific tumor types, including several hematological malignancies and androgen receptor-positive prostate cancer. A-485 inhibited the androgen receptor transcriptional program in both androgen sensitive and castrate resistant prostate cancer and inhibited tumor growth in a castration resistant xenograft model. These results demonstrate the feasibility of selectively targeting the catalytic activity of histone acetyltransferases.
Progesterone receptors (PRs) mediate proliferation during breast development and contribute to breast cancer progression, in part by synergizing with peptide growth factors. We have previously identified PR Ser294 as a key site for direct regulation of PR location, activity, and turnover in response to phosphorylation events. Herein, we sought to better understand how hormonal cross talk alters PR function. We demonstrate that progestins (R5020 and RU486) induce rapid (15 min) sumoylation of PR Lys388; sumoylation represses PR transcriptional activity on selected progesterone response element-driven and endogenous promoters and retards ligand-induced PR down-regulation. Consistent with this finding, we show that stabilized but weakly active phospho-mutant S294A PRs are heavily sumoylated. Conversely, desumoylated PR, created by mutation of PR Lys388 (K388R) or by overexpression of sentrin (SUMO)-specific protease desumoylating enzymes, are hypersensitive to low progestin concentrations. Combination of K388R and S294A mutations (KRSA double-mutant PR) rescues both transcription and turnover of impaired phospho-mutant (S294A) receptors. Notably, phosphorylation events antagonize PR-B but not PR-A sumoylation. Treatment of cells with epidermal growth factor or transient expression of activated mitogen-activated protein/ERK kinase kinase or cyclin-dependent protein kinase 2 induces PR-B Ser294 phosphorylation and blocks PR-B sumoylation, thereby derepressing receptor activity; PR-A is resistant to these events. Modulation of reversible PR sumoylation in response to diverse hormonal signals provides a mechanism for rapid isoform-specific changes in hormone responsiveness. In the context of elevated protein kinase activities, such as during mammary gland development or breast cancer progression, phosphorylated PR-B may be undersumoylated, transcriptionally hyperactive, and unstable/undetectable.
Human progesterone receptors (PR) rapidly activate cytosolic signaling pathways, in addition to their classical function as ligand-activated transcription factors. Using ER+/PR-B+ T47D breast cancer cells, we probed the role of progestin-stimulated rapid PR signaling in the transcriptional regulation of target genes involved in breast cancer cell proliferation. Epidermal growth factor receptor (EGFR) was rapidly activated after a 10-min treatment with R5020. Progestin induced EGFR-, c-Src-, and MAPK-dependent phosphorylation of PR-B on the MAPK consensus site, Ser345. Ser345-phosphorylated PR-B receptors strongly associated with specificity protein 1 (Sp1) transcription factors to regulate PR cell cycle (p21) and growth-promoting (EGFR) target genes whose promoters lack canonical progesterone response element sequences. Inhibitors of EGFR, c-Src, or MAPK activities blocked PR tethering to Sp1 and progestin-stimulated S-phase entry. Mutant PR-B receptors defective for c-Src binding (mPro) were not phosphorylated on Ser345 in response to progestin and failed to interact with Sp1. Hormone-induced complexes containing Sp1 and wild-type PR-B, but not S345A or mPro PR-B, were recruited to Sp1 sites within the endogenous p21 promoter. Progestin-induced S-phase entry was attenuated in T47D cells containing wild-type PR-B and treated with EGFR, c-Src, or MAPK kinase inhibitors or in T47D cells stably expressing mPro or mutant DNA-binding domain PR-B. In sum, rapid progestin-activated PR signaling leads to PR Ser345 phosphorylation and tethering to Sp1. These events are critical for progestin-stimulated regulation of Sp1 target genes and breast cancer cell proliferation. Our data demonstrate the therapeutic potential for PR-targeted breast cancer treatment by exploiting multiple nodes along the PR signaling pathway, including PR-B, EGFR, c-Src, MAPK, or Sp1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.