In this work, a comprehensive experimental analysis on the performance of a 50 cm2 polymer electrolyte membrane (PEM) fuel cell is presented, including experimental results for a dedicated load cycling test. The harmonized testing protocols defined by the Joint Research Centre (JRC) of the European Commission for automotive applications were followed. With respect to a reference conditions representative of automotive applications, the impact of variations in the cell temperature, reactants pressure, and cathode stoichiometry was analyzed. The results showed that a higher temperature resulted in an increase in cell performance. A higher operating pressure also resulted in higher cell voltages. Higher cathode stoichiometry values negatively affected the cell performance, as relatively dry air was supplied, thus promoting the dry-out of the cell. However, a too low stoichiometry caused a sudden drop in the cell voltage at higher current densities, and also caused significant cell voltage oscillations. No significant cell degradation was observed after the load cycling tests.
Fuel cells are electrochemical devices that convert the chemical energy stored in fuels (hydrogen for polymer electrolyte membrane (PEM) fuel cells) directly into electricity with high efficiency. Fuel cells are already commercially used in different applications, and significant research efforts are being carried out to further improve their performance and durability and to reduce costs. Experimental testing of fuel cells is a fundamental research activity used to assess all the issues indicated above. The current work presents original data corresponding to the experimental analysis of the performance of a 50 cm2 PEM fuel cell, including experimental results from a load cycling dedicated test. The experimental data were acquired using a dedicated test bench following the harmonized testing protocols defined by the Joint Research Centre (JRC) of the European Commission for automotive applications. With the presented dataset, we aim to provide a transparent collection of experimental data from PEM fuel cell testing that can contribute to enhanced reusability for further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.