As compared with paclitaxel-eluting stents, the use of sirolimus-eluting stents results in fewer major adverse cardiac events, primarily by decreasing the rates of clinical and angiographic restenosis.
Stimulation of beta-adrenergic receptors (betaARs) causes apoptosis in adult rat ventricular myocytes (ARVMs). The role of reactive oxygen species (ROS) in mediating betaAR-stimulated apoptosis is not known. Stimulation of betaARs with norepinephrine (10 micromol/L) in the presence of prazosin (100 nmol/L) for 24 hours increased the number of apoptotic myocytes as determined by TUNEL staining by 3.6- fold. The superoxide dismutase/catalase mimetics Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (MnTMPyP; 10 micromol/L) and Euk-134 decreased betaAR-stimulated apoptosis by 89+/-6% and 76+/-10%, respectively. Infection with an adenovirus expressing catalase decreased betaAR-stimulated apoptosis by 82+/-15%. The mitochondrial permeability transition pore inhibitor bongkrekic acid (50 micromol/L) decreased betaAR-stimulated apoptosis by 76+/-8%, and the caspase inhibitor zVAD-fmk (25 micromol/L) decreased betaAR-stimulated apoptosis by 62+/-11%. betaAR-stimulated cytochrome c release was inhibited by MnTMPyP. betaAR stimulation caused c-Jun NH2-terminal kinase (JNK) activation, which was abolished by MnTMPyP. Transfection with an adenovirus expressing dominant-negative JNK inhibited betaAR-stimulated apoptosis by 81+/-12%, and the JNK inhibitor SP600125 inhibited both betaAR-stimulated apoptosis and cytochrome c release. Thus, betaAR-stimulated apoptosis in ARVMs involves ROS/JNK-dependent activation of the mitochondrial death pathway.
The direct effects of catecholamines on cardiac myocytes may contribute to both normal physiologic adaptation and pathologic remodeling, and may be associated with cellular hypertrophy, apoptosis, and alterations in contractile function. Norepinephrine (NE) signals via a-and b-adrenergic receptors (AR) that are coupled to G-proteins. Pharmacologic studies of cardiac myocytes in vitro demonstrate that stimulation of b 1 -AR induces apoptosis which is cAMPdependent and involves the voltage-dependent calcium in¯ux channel. In contrast, stimulation of b 2 -AR exerts an anti-apoptotic effect which appears to be mediated by a pertussis toxin-sensitive G protein. Stimulation of a 1 -AR causes myocyte hypertrophy and may exert an anti-apoptotic action. In transgenic mice, myocardial overexpression of either b 1 -AR or Gas is associated with myocyte apoptosis and the development of dilated cardiomyopathy. Myocardial overexpression of b 2 -AR at low levels results in improved cardiac function, whereas expression at high levels leads to dilated cardiomyopathy. Overexpression of wildtype a 1B -AR does not result in apoptosis, whereas overexpression of Gaq results in myocyte hypertrophy and/or apoptosis depending on the level of expression. Differential activation of the members of the mitogen-activated protein kinase (MAPK) superfamily and production of reactive oxygen species appear to play a key role in mediating the actions of adrenergic pathways on myocyte apoptosis and hypertrophy. This review summarizes current knowledge about the molecular and cellular mechanisms involved in the regulation of cardiac myocyte apoptosis via stimulation of adrenergic receptors and their coupled effector pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.