Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning (ML) techniques to impressive results in regression, classification, data generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets is motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed up classical ML algorithms. Here we review the literature in quantum ML and discuss perspectives for a mixed readership of classical ML and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in ML are identified as promising directions for the field. Practical questions, such as how to upload classical data into quantum form, will also be addressed.
Quantum systems interacting with an unknown environment are notoriously difficult to model, especially in presence of non-Markovian and non-perturbative effects. Here we introduce a neural network based approach, which has the mathematical simplicity of the Gorini-Kossakowski-Sudarshan-Lindblad master equation, but is able to model non-Markovian effects in different regimes. This is achieved by using recurrent neural networks (RNNs) for defining Lindblad operators that can keep track of memory effects. Building upon this framework, we also introduce a neural network architecture that is able to reproduce the entire quantum evolution, given an initial state. As an application we study how to train these models for quantum process tomography, showing that RNNs are accurate over different times and regimes. OPEN ACCESS RECEIVED
The exact description of many-body quantum systems represents one of the major challenges in modern physics, because it requires an amount of computational resources that scales exponentially with the size of the system. Simulating the evolution of a state, or even storing its description, rapidly becomes intractable for exact classical algorithms. Recently, machine learning techniques, in the form of restricted Boltzmann machines, have been proposed as a way to efficiently represent certain quantum states with applications in state tomography and ground state estimation. Here, we introduce a practically usable deep architecture for representing and sampling from probability distributions of quantum states. Our representation is based on variational autoencoders, a type of generative model in the form of a neural network. We show that this model is able to learn efficient representations of states that are easy to simulate classically and can compress states that are not classically tractable. Specifically, we consider the learnability of a class of quantum states introduced by Fefferman and Umans. Such states are provably hard to sample for classical computers, but not for quantum ones, under plausible computational complexity assumptions. The good level of compression achieved for hard states suggests these methods can be suitable for characterizing states of the size expected in first generation quantum hardware.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.