Carbonic anhydrase (CA) IX is a plasma membrane-associated member of the ␣-CA enzyme family, which is involved in solid tumor acidification. It is a marker of tumor hypoxia and a prognostic factor in several human cancers. An aberrant increase in CA IX expression in chronic hypoxia and during development of various carcinomas contributes to tumorigenesis through at least two mechanisms: pH regulation and cell adhesion control. Here we report the X-ray structure of the catalytic domain of CA IX in complex with a classical, clinically used sulfonamide inhibitor, acetazolamide. The structure reveals a typical ␣-CA fold, which significantly differs from the other CA isozymes when the protein quaternary structure is considered. Thus, two catalytic domains of CA IX associate to form a dimer, which is stabilized by the formation of an intermolecular disulfide bond. The active site clefts and the PG domains are located on one face of the dimer, while the C-termini are located on the opposite face to facilitate protein anchoring to the cell membrane. A correlation between the threedimensional structure and the physiological role of the enzyme is here suggested, based on the measurement of the pH profile of the catalytic activity for the physiological reaction, CO 2 hydration to bicarbonate and protons. On the basis of the structural differences observed between CA IX and the other membrane-associated ␣-CAs, further prospects for the rational drug design of isozymespecific CA inhibitors are proposed, given that inhibition of this enzyme shows antitumor activity both in vitro and in vivo.
APE1/Ref-1 (hereafter, APE1), a DNA repair enzyme and a transcriptional coactivator, is a vital protein in mammals. Its role in controlling cell growth and the molecular mechanisms that fine-tune its different cellular functions are still not known. By an unbiased proteomic approach, we have identified and characterized several novel APE1 partners which, unexpectedly, include a number of proteins involved in ribosome biogenesis and RNA processing. In particular, a novel interaction between nucleophosmin (NPM1) and APE1 was characterized. We observed that the 33 N-terminal residues of APE1 are required for stable interaction with the NPM1 oligomerization domain. As a consequence of the interaction with NPM1 and RNA, APE1 is localized within the nucleolus and this localization depends on cell cycle and active rRNA transcription. NPM1 stimulates APE1 endonuclease activity on abasic double-stranded DNA (dsDNA) but decreases APE1 endonuclease activity on abasic single-stranded RNA (ssRNA) by masking the N-terminal region of APE1 required for stable RNA binding. In APE1-knocked-down cells, pre-rRNA synthesis and rRNA processing were not affected but inability to remove 8-hydroxyguanine-containing rRNA upon oxidative stress, impaired translation, lower intracellular protein content, and decreased cell growth rate were found. Our data demonstrate that APE1 affects cell growth by directly acting on RNA quality control mechanisms, thus affecting gene expression through posttranscriptional mechanisms.APE1/Ref-1 (also called HAP1 or APEX, and here referred to as APE1), the mammalian ortholog of Escherichia coli Xth (exonuclease III), is a vital protein (20) that acts as a master regulator of cellular response to oxidative stress conditions and contributes to the maintenance of genome stability (55, 56). APE1 is involved in both the base excision repair (BER) pathways of DNA lesions, acting as the major apurinic/apyrimidinic (AP) endonuclease, and in transcriptional regulation of gene expression as a redox coactivator of different transcription factors, such as early growth response protein 1 (Egr-1), NF-B, and p53 (55, 56). These two biological activities are located in two functionally distinct protein domains. In fact, the N-terminal region, containing the nuclear localization signal (NLS) sequence, is principally devoted to redox activity through Cys65, while the C-terminal one exerts enzymatic activity on the abasic sites of DNA (56, 63). The protein C terminus is highly conserved during phylogenesis, while the N terminus is not. Except in mammals, which always show a high sequence conservation (more than 90%), and Danio, Drosophila, Xenopus, and Dictyostelium (presenting a sequence identity of less than 40%), the N-terminal region is mostly absent in other organisms. A third APE1 function, which is regulated by Lys6/Lys7 acetylation (7), is indirect binding to the negative calcium response elements (nCaRE) of some promoters (i.e., PTH and APE1 promoters), thus acting as a transcriptional repressor (12,30).In different ...
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) contribute to the pathogenesis and/or progression of several human diseases. Proteins are important molecular signposts of oxidative/nitrosative damage. However, it is generally unresolved whether the presence of oxidatively/nitrosatively modified proteins has a causal role or simply reflects secondary epiphenomena. Only direct identification and characterization of the modified protein(s) in a given pathophysiological condition can decipher the potential roles played by ROS/RNS-induced protein modifications. During the last few years, mass spectrometry (MS)-based technologies have contributed in a significant way to foster a better understanding of disease processes. The study of oxidative/nitrosative modifications, investigated by redox proteomics, is contributing to establish a relationship between pathological hallmarks of disease and protein structural and functional abnormalities. MS-based technologies promise a contribution in a new era of molecular medicine, especially in the discovery of diagnostic biomarkers of oxidative/nitrosative stress, enabling early detection of diseases. Indeed, identification and characterization of oxidatively/nitrosatively modified proteins in human diseases has just begun.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.