BackgroundWhile observational studies show that an active lifestyle including cognitive, physical, and social activities is associated with a reduced risk of cognitive decline and dementia, experimental evidence from corresponding training interventions is more inconsistent with less pronounced effects. The aim of this study was to evaluate and compare training- and lifestyle-related changes in cognition. This is the first study investigating these associations within the same time period and sample.MethodsFifty-four older adults at risk of dementia were assigned to 10 weeks of physical training, cognitive training, or a matched wait-list control condition. Lifestyle was operationalized as the variety of self-reported cognitive, physical, and social activities before study participation. Cognitive performance was assessed with an extensive test battery prior to and after the intervention period as well as at a 3-month follow-up. Composite cognition measures were obtained by means of a principal component analysis. Training- and lifestyle-related changes in cognition were analyzed using linear mixed effects models. The strength of their association was compared with paired t-tests.ResultsNeither training intervention improved global cognition in comparison to the control group (p = .08). In contrast, self-reported lifestyle was positively associated with benefits in global cognition (p < .001) and specifically in memory (p < .001). Moreover, the association of an active lifestyle with cognitive change was significantly stronger than the benefits of the training interventions with respect to global cognition (ps < .001) and memory (ps < .001).ConclusionsThe associations of an active lifestyle with cognitive change over time in a dementia risk group were stronger than the effects of short-term, specific training interventions. An active lifestyle may differ from training interventions in dosage and variety of activities as well as intrinsic motivation and enjoyment. These factors might be crucial for designing novel interventions, which are more efficient than currently available training interventions.Trial registrationClinicalTrials.gov Identifier NCT01061489. Registered February 2, 2010.Electronic supplementary materialThe online version of this article (doi:10.1186/s12888-016-1018-z) contains supplementary material, which is available to authorized users.
Abstract. Physical exercise has positive effects on cognitive functioning in both healthy older adults and ambulatory older adults with dementia. The present study investigated whether a 10-week multimodal movement intervention conducted in the seated position can slow cognitive deterioration in demented and physically very frail nursing-home residents. Our analysis revealed that training participants showed no further overall cognitive deterioration throughout the study and a significant improvement in the ADAS-Cog orientation/praxis subscore (p = .04). In contrast, the control group demonstrated a significant decline in the ADAS-Cog sum score (p = .02). These results might be of relevance for geriatric practice since they indicate that a short-term physical intervention -even in the seated position -can decelerate cognitive decline and dementia despite physical frailty.
BackgroundThe increasing prevalence of dementia in the next decades is accompanied by various societal and economic problems. Previous studies have suggested that physical activity positively affects motor and cognitive skills in individuals with dementia (IWD). However, there is insufficient evidence probably related to several methodological limitations. Moreover, to date adequate physical activity interventions specifically developed for IWD are lacking.ObjectiveThis study aims to investigate the effectiveness of a multimodal exercise program (MEP) on motor and cognitive skills in IWD in a high-quality multicenter trial.MethodsA multicenter randomized controlled trial with baseline and postassessments will be performed. It is planned to enroll 405 participants with dementia of mild to moderate stage, aged 65 years and older. The intervention group will participate in a 16-week ritualized MEP especially developed for IWD. The effectiveness of the MEP on the primary outcomes balance, mobility, and gait will be examined using a comprehensive test battery. Secondary outcomes are strength and function of lower limbs, activities of daily living, and cognition (overall cognition, language, processing speed, learning and memory, and visual spatial cognition).ResultsEnrollment for the study started in May 2015. It is planned to complete postassessments by the beginning of 2017. Results are expected to be available in the first half of 2017.ConclusionsThis study will contribute to enhancing evidence for the effects of physical activity on motor and cognitive skills in IWD. Compared to previous studies, this study is characterized by a dementia-specific intervention based on scientific knowledge, a combination of motor and cognitive tasks in the intervention, and high standards regarding methodology. Findings are highly relevant to influence the multiple motor and cognitive impairments of IWD who are often participating in limited physical activity.Trial RegistrationGerman Clinical Trials Register DRKS00010538; https://drks-neu.uniklinik-freiburg.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00010538 (Archived by WebCite at http://www.webcitation.org/6oVGMbbMD)
Background There is a high prevalence of gait impairments in individuals with dementia (IWD). Gait impairments are associated with increased risk of falls, disability, and economic burden for health care systems. Only few studies have investigated the effectiveness of physical activity on gait performance in IWD, reporting promising but inconsistent results. Thus, this study aimed to investigate the effectiveness of a multimodal exercise program (MEP) on gait performance in IWD. Methods In this parallel-group randomized controlled trial, we enrolled 319 IWD of mild to moderate severity, living in care facilities, aged ≥ 65 years, and being able to walk at least 10 m. The control group ( n = 118) received conventional treatment, whereas the intervention group ( n = 201) additionally participated in a 16-week MEP specifically tailored to IWD. We examined the effects of the MEP on spatiotemporal gait parameters and dual task costs by using the gait analysis system GAITRite. Additionally, we compared characteristics between positive, non-, and negative responders, and investigated the impact of changes in underlying motor and cognitive performance in the intervention group by conducting multiple regression analyses. Results Two-factor analyses of variance with repeated measurements did not reveal any statistically significant time*group effects on either spatiotemporal gait parameters or dual task costs. Differences in baseline gait performance, mobility, lower limb strength, and severity of cognitive impairments were observed between positive, non-, and negative responders. Positive responders were characterized by lower motor performance compared to negative and non-responders, while non-responders showed better cognitive performance than negative responders. Changes in lower limb strength and function, mobility, executive function, attention, and working memory explained up to 39.4% of the variance of changes in gait performance. Conclusions The effectiveness of a standardized MEP on gait performance in IWD was limited, probably due to insufficient intensity and amount of specific walking tasks as well as the large heterogeneity of the sample. However, additional analyses revealed prerequisites of individual characteristics and impacts of changes in underlying motor and cognitive performance. Considering such factors may improve the effectiveness of a physical activity intervention among IWD. Trial registration DRKS00010538 (German Clinical Trial Register, date of registration: 01 June 2016, retrospectively registered, https://www.drks.de/drks_web/setLocale_EN.do ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.