This paper presents an attempt to reconstruct the Campo del Cielo (CdC) impact event, that is, to estimate the preatmospheric mass and velocity of the iron meteoroid and pre-impact parameters of its fragments allowing formation of funnels and impact craters. The goal of this study is to improve the understanding of the effects small-scale iron meteoroids can have on the Earth's surface. We model the meteoroid's atmospheric flight taking deceleration, ablation, and fragmentation into account, and then compare the results with available observations. We found that a fragment's velocity near the surface should be <1 km s −1 in order to form a funnel with an intact meteorite inside. The estimates of preatmospheric (at an altitude of 100 km) parameters of the CdC impact event are as follows: minimal mass of 7500-8500 t, which corresponds to a diameter range of 12.2-12.8 m; maximum entry angle above the atmosphere of ~16.5°and velocities of 14.5-18.4 km s −1 , which is close to the one most frequently reached by Near-Earth objects (NEOs). Near the surface, the largest fragments with a mass of 400-1500 t and velocities of 4-7 km s −1 form impact craters whereas fragments with a mass <31 t and velocities <1 km s −1 form funnels. Masses <3 t are not included in our simulations. Their total mass is 280-460 t at the point of disruption but <110 t on the Earth's surface. These numerous small fragments are dispersed over a large area and are very popular among meteorite hunters and dealers. In spite of all the observed crater location/size data and impactor velocity limits from the models, there are far more free parameters than constraints. As a result, any values for preatmospheric mass, velocity, and entry angle are merely representative or limitative as opposed to true values.
<p><strong>Description of the CdC</strong></p> <p>Campo del Cielo (CdC, Figure 1) is a 4000-year-old [1, 2] strewn field in the south of the Chaco province, Argentina, which was caused by an impact of IA iron octahedrite [3]. This strewn field has an extremely elongated pattern extending over an area of ~14 km (downrange) by ~3.5 km (lateral). Other known terrestrial strewn fields are much smaller: the Sikhote-Alin in Siberia is 1.2 km long, the Kaalijarv in Estonia is 1 km, and&#160; the Morasko strewn field in Poland extends over a length of 0.4 km.&#160; Another interesting characteristic of CdC is that a lot of depressions found within the strewn field are not impact craters but penetration funnels [4] in which intact meteorites could be found including 30-ton-weight fragments.</p> <p><img src="data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAfQAAAHFCAYAAAAE8AuCAAAgAElEQVR4nOzdd3QU154ves2982bWfeudeWfmzHpz1z3jY/vYxz422GCCwQQFwASRcwZjG2ywAZMMIkoiCATYBoPJ2WRskgGRg8Aig4SEcmipW90KnXN31f6+P6SqIxFsFFq1q/X7rNWLhbq6e3fvqvrWrtq1dwiAEhBCCCFE1UJAgU4IIYSoHgU6IYQQEgQo0AkhhJAgUG+BzhhDXl4ecnJyIIoiAMDr9SI1NRWpqalIS0tDRkYGHA5Htdd5vV6kp6fj0aNHSEtLg9/vBwCUl5cjLS0NqampyMrKAmOsPopJCCGEBKV6CXS3240xY8agX79+6NOnDyZMmACfz4fi4mKMGDECI0aMwNChQ9G8eXNkZGRUe21qairatm2L0aNHY9SoUTCZTBBFEXFxcejUqRNGjx6NadOmyUFPCCGEkKfVS6D7fD48ePAAHo8HLpcLYWFhOHnyJBhj8Hq98Pl8uHTpEnr16iW33iW3bt3C4sWLIYoifD4fGGMQRREzZszAmTNnIIoihTkhhBDyO+r9GjpjDJ07d8bRo0er/X3SpEmIj49/avl79+6hXbt2mDx5Mn766SeIoghRFDFnzhz07NkT06dPR3Jycn0WkRBCCAk69R7ox44dQ3h4ONxut/w3s9mMiIgI5OfnP7W8xWLB6dOncfbsWXTp0gU7duwAYwypqalISEjAjz/+iPDwcGi1Wvk1giDQg5OHdACmdDno8Y/6ULoM9KAHr49g2T6ePNMdkEBPS0vDu+++izt37lT7+927d9GnTx+4XK7ffP2BAwfQvXv3ah3gBEFAp06dsHLlSgBAaWkpjh49irNnz+LcuXP0UPhx4sQJnDhxAufPn1e8LI39cf78eRw5cgQJCQmKl4UeFY+zZ8/Svoqjx8GDBxUvQ10fJ0+eRFJS0jMztN4CXa/Xo2PHjjh37txTz3399ddYt25dtZCWwr3qkcbatWvRo0ePan/3+XwIDQ3Fxo0bAQC5ubm4dOkStFotioqK6KHgQ6vV4vz580hISIBer1e8PI39UVpaig0bNiAzM5O2Dw4eWq0Wubm50Gg0ipeFHkXQ6XRYtmwZNBqNqrePx48f4/Tp089spddLoHs8HvTp0wfNmjVDfHw8li1bhps3bwIA/H4/3nnnHTx48EBe/vz583j11VchiiLWrFmDqKgoREdHo0OHDkhMTITT6cTnn3+O2NhYTJ48GQMHDoTNZgMAaDSap3rKE+Xk5uYiOztb6WKQSpcvX4bH41G6GKSS1NGXKE8QBBw7duy5p6vVwm6349q1a4ELdEEQcPPmTSQmJuLixYu4cOECNBoNgIpAT0tLq/bhFosF9+7dAwDk5eXhypUruHz5MjIzM8EYgyAIuHv3Li5duoSrV6+ivLxcfq1Go8Hjx4/rWmRST7xeb7X+EkRZdrtd9TusYCKKIgU6RywWi+rrw2q1BjbQGxIFOl/sdrt89oQoz2Aw0G2eHBEEQfUBEiwYYygqKlL9AS8FOgkYh8MBu92udDFIpdLSUgiCoHQxSCVqofODMQadTkeBzhMKdL5YrVZYLBali0Eq6XQ6CnSOUAudH4wx5Ofnq74+KNBJwHg8HrqGzhGr1ar6FkgwYYypPkCCiclkUn19UKCTgHG5XHA6nUoXg1QymUzUQucInXLnB2MMpaWlqq8PCnQSMGazGUajUelikEoajQY+n0/pYpBKvzWqF2lYjDFkZ2dToPOEAp0v1CmOL6WlpRQgHKEWOj8YYyguLlZ9fVCgk4Cx2+2wWq1KF4NU0uv1dMqdIxTo/KDb1jhEgc4Xv99P9z1zxO12U4BwhOqCL783n4gaUKCTgDGbzTCZTEoXg1TSaDR0gMURuobOD8YYsrKyVF8fFOgkYNxuN922xhGLxUKn3DlC96HzgzEGo9Go+vqgQCcBY7FYYDablS4GqVRUVEQtdI5QoPODMYa8vDxqofOEAp0vdA2dLx6PhwKEIzSwDF9cLpfq64MCnQSMzWajXu4coV7ufBFFUfUtwmDBGENhYSEFOk8o0Pni8Xho/m2O2Gw21e+wggndtsYPxlhQXB6kQCcBQ/eh84WmT+ULXUPnB92HziEKdL5QC50vNptN9TusYELX0PlCLXTOUKDzxel0wuFwKF0MUqm8vJwCnSN0yp0fjDHo9XrV1wcFOgkYt9sdFKMvBQuz2UyBzhEKdH4wxlBWVqb6+qBAJwFD19D5Qr3c+UKBzg/pGrra64MCnQSMx+OhFjpHLBYLtdA5ovbwCCbSSHFqR4FOAsbpdMLpdCpdDFLJZDJRoHOEWuj8YIyhpKRE9fVBgU4CxuPx0FjuHLFarRToHKFA5wdjDCaTSfX1QYFOAsZkMqG8vFzpYpBKubm5dB86R2i2NX4wxvD48WPV1wcFOgkYug+dLzRSHF+ohc4PxhgsFovq64MCnQSM1WoNisEagoVWq6Ve7hyhQOcHYwz5+fnUQucJBTpfaPIJvvh8PgoQjlBd8MXn8yldhDqjQCcBU1xcDJ1Op3QxSKWUlBR4vV6li0Eq+Xw+OuDlhCiKuHnzpurPYFGgk4Dxer0UIBxxOBwUIByhFjo/GGNB0ceEAp0EjMlkCorBGoJFXl5eUJxWDBbUy50f1MudQxTohDwfze5FyPMFw7ZBgU4CprS0FCUlqlqFglpGRgZdAuGI3+9XfYswWIiiiIcPH6q+PijQScAIgqD6TibBxOPxBEUrJFjQGRO+BMOolhToJGAsFgvdh86RoqIiOsDiCLXQ+cEYQ25ururrgwKdBAxjTPUbSDChuiDk+YLhYJcCnQQM9XLnS35+Po3lzhHq5c4PURSRkZGh+vqgQCcB4/V66TYpjjidTrpmyxEa+pUvdrtd6SLUGQU6CRi73Q6bzaZ0MUglg8EQFKcVg4UgCBTonGCMoaioSPX1QYFOAsbv99MpXo5QL3dCno96uXOGAp0v1MudL0VFRXSAxRG6hs4P6uXOIQp0vtBY7nxxOp2q32EFEzpbwg/GGF1D5w0FOl/MZjO10Dmi0Wiohc4Rug+dH6IoIisrS/X1QYFOAoauofOFrqHzheqCH4wxuFwupYtRZxToJGCMRiPKy8uVLgapRLOt8YWuofNDFEVFZ1tjjCEpKQkLFy7EyZMna10OCnQSMDRWNV/8fj/VB0eoLvii5C2dBw8eRNeuXbFt2zbMnz+/1mcLKNBJwJSVldFsaxyh2db4QtfQ+aHkbGuCIKBr167IyMhAaWlpncpAgU4ChmZb44vP56NWIUeoLvii1MGu0+lEaGgopkyZgvbt2yM+Pr7W+00KdBIwpaWl0Ov1SheDVEpPT6dr6ByhFjo/RFHE/fv3FWmAGI1G/Nd//RcSEhJgs9nQokULXL9+vVbvRYFOAoauofOF6oKQ51Nq+3A6nejatSusVisAIDw8HCtWrKjVe1Ggk4DR6XQoKipSuhik0v379+HxeJQuBqlELXR+iKKIxMTEBmuh+7xe2CoDXBAEtGrVCtevX4fD4UDr1q2RkJBQq/elQCcBQy10vlB9EPJ8Dblt3Ej6Fd+sXSv///z58+jUqRM6deqEL7/8stbjd1Cgk4Ch+9D5kpubS9fQOUL3ofOjIe9DZ6KIfjO+wruzJkNfpK34W+Vsb5mZmXXaRinQScAwxmiHxRGqC0Ker6G2jxuJ1/D+jxvQ9NwRbNm3t17PDFCgk4DR6/UoLi5WuhikUkpKCl1D54jP56ODLE6IooibN28G/Bq6KAiYt+YbvHfzLMIN6YiMmgWnzVZv70+BTgLG7/fTfegc8Xq9dA2dI9SngS8NMR+6XqtFi6ULEK5/jIiiR2i6bxNOnThZb+9PgU4Cxm63w1aPR5+kbgwGAx1gcUQQBAp0TkjXsANdH0u+WY1W188gQpeGiKJHaJt5E8Ni5sNTT1O3UqCTgKEWCF/o9C4hzxfog11ruRGtv56K5vcv4v2HV9D64VW8n56E/4qaigcPH9bPZ1Cgk0ChXu58odnW+EK93PnBGAt4L/eU5GTMiV+BqG9WVXvMXh2PYydO1MtnUKCTgKH50PlC86HzheqCLzQfOmco0Plit9thr6drQ6Tu9Ho9XUPnCF1D50dDXUMPNAp0EjDUQucLtdD5QnXBF2qhc4YCnS/l5eUoKytTuhikUk5ODl1D5whdQ+eHKIpITU1VfX1QoJOAoV7ufBFFkeqDI1QXfOGxPtLT0/Hrr78+daksOzsbv/7661NlpkAnAWM2m2EymZQuBqmk0WjoEghH6Bo6P0RRRFZWFlct9KioKPTp0wcjRoxA3759YTKZIIoidu3ahQ8//BCDBg3C8OHDYbFY5NdQoJOAEUWRqw2ksaMAIeT5eDvYvXXrFmw2GzweD3r37o01a9agrKwM//7v/47Lly/D7XbjzTffxO7du+XXUKCTgNHpdNBqtUoXg1S6d+8ejeXOERrLnR+iKOL69evc3gUyePBgxMfHw+12o1+/fjh+/DgsFgs6d+6MBw8eyMtRoJOAoWvofKHwIOT5eN0+7t+/j/fffx8lJRVxfO7cObRt2xYRERH47LPPqnV0pUAnAVNaWgqDwaB0MUil9PR06uXOEb/fz22INDaiKOLBgwfc1UdRURHatm2LU6dOAQBKSkrQokUL/PrrrzCZTOjTpw+2bt0qL0+BTkgjQWdLCHk+5baPZ3+u0+lCx44dqgV2QUEBmjVrJnc2/uqrrzB//nz5eQp0EjDUQudLeno6vF6v0sUglaiFzg9RFHH//n1F6iMvczfMxkfV/ub1lKFPz/fQvPl72LVrF7Zt24br16/D6XRi1KhR+OSTT7Bq1Sq0bt0ad+/elV9HgU4Chnq588Xv91MrnZDnUKqXu8/vQFbqBtgt2RX/95iR83gTjh3dh8OHD2Pfvn3Yu3cvkpKSAFQMqX3q1CkcOHAA6enp1d6LAp0EjMFggE6nU7oYpNKjR4+ohc4R6uXOD1EUcfv2bcV6uXs95ch69AOctiJkpW2G1ZxRq/ehQCcBIwgCt7eBNEY0ljshz+d2uxX9fKs5G2eOvA+D7mLt34MCnQSK2WyG2WxWuhikUmFhIXeDZzRmNBQvPxhjyM7OVqw+GBNRkHMQuenbkZW2EYK/dhPFUKCTgBEEgQKEI9RCJ+T5lBx0qSj3OLQFpwAwWExpyErdAMZqfnaTAp0EjNFopNnWOJKbm0v3oXOEernzQxRFPH78WJH60BedR37WvmoBbtBdQW7G7hqHOgU6CRi/308BwhGXy0UtdI7QSIp8sdvtitSH1ZQOUXyysyqD2ZgKxmp2gEGBTgLG4XDAZrMpXQxSyWAwUCdFjtBkOfxgjEGr1ar+jAkFOgkYr9dLk4FwxG63q36HFUyohc4Xq9WqdBHqjAKdBAzNh84X6uXOF0EQ6ACLE4wxZGVlqf4AiwKdBIwoinSKlyM+n0/1O6xgQnXBl2Do70OBTgLG4XDAbrcrXQxSqbS0lA6wOEL3ofODMQadTqf6+qBAJwHj8/mC4qg3WFAvd75QXfAlGBofFOgkYMrKylBSoqpVKKhlZWXRARZH6D50foiiiJSUFNWfwaJAJwFDvXj5QuFByPMFw/ZBgU4Cxmw2w2g0Kl0MUqmwsJBa6Byh+9D5IYqiomO51xcKdBIwNNsaX7xer+p3WIQESjCMmUGBTgLGYDBAr9crXQxSKTU1leZD5whdQ+eHKIq4c+eO6hsgFOgkYERRpB0WR2hQGUKeLxi2Dwp0EjAmk4muoXMkLy+PrqFzhK6h80MURaSnp6u+AUKBTgKGxnLni1KzSZFno7tA+MEYo7HceUOBzheaD50vubm5QXFaMVjQWO78YIwpNh96faJAJwHj8/moExZHnE6n6ndYwYRa5/xgjMHhcChdjDqjQCcBY7PZguI0VrDQ6/Wq78UbTGgsd34wxlBYWKj6A14KdBIwbrcbLpdL6WKQSmazWfU7rGBCgc4PxhjKy8tVXx8U6CRg7HY7tdA5Qi10vlAvd34wxlBUVKT6A14KdBIwTqczKK5LBYvy8nIKdI5QL3d+MMZgMBiULkadUaCTgKH50PlC86HzhXq584MxhuLiYtUfYFGgk4DxeDxwu91KF4NUslgsFCAcoRY6PxhjMJlMqq8PCnQSME6nE06nU+likEp0yp0v1CmOH4wxlJSUqL4+KNBJwFCg88VoNFKgc4QCnR+MMZSWlqq+PijQScDYbDbYbDali0EqGQwGCnSOUC93ftB96ByiQOeL3++nyUA44na7KUA4QnXBl2A4m0iBTgKGernzpbS0lMZy5wj1cucH9XLnEAU6XzweD40UxxHq5c4XtYdHMKFe7jXkcrngdDrlH0wURdjtdvnhdDqf23pwu91PTSzh9/ufGrSEAp0vVqsVJpNJ6WKQSoWFhdRC5whdQ+cHYwy5ubmqr4+AB7rb7caECRPQoUMHtG/fHgsWLJA7IHTp0gVhYWEICwtDu3btngpjURSxYcMGtG/fHmFhYdi+fTuAimkg+/Tpgw4dOiAqKkru6EOBzhdRFKkTFkcozAl5vmCYGTLgge71enHy5EmUlZWhpKQEbdq0kT/Q4XDA6XTi5s2b6Nq161M/aHJyMvr27Yvi4mK4XC75PtrJkydj8+bNsFqtCAsLw8WLFwFQoPOGZlvjS3FxMYU6R0wmE7Zu3Yply5bh0qVLdDlEQYwxaDQaaqHX1Icffoj9+/dX+9usWbMQFRVV7W+iKGLOnDmYMGECtm7dij179sDj8cBisaBJkyZ4/PgxGGOIi4vDwoULAVCg88bpdFKnOI6Ul5dTaHBCFEXMnTsXY8eOxcGDB9G0aVOcO3dO6WI1Wowx6PV6CvSauH37Npo3b16t1eZ0OhEZGYnMzMxqy/r9frRv3x7vvfcetmzZgp49e2L+/Pkwm80IDw9HSUlF0c6ePYtFixYBqAj09PT0+iwyqQOz2Qyz2ax0MUgljUZDLXROOJ1OtG7dGklJSQCAwYMHY9myZQqXqvFijCE7O1v1gW6z2Rom0EtKShAaGopTp05V+/vDhw8RHh7+1AAkgiAgNDQUMTExAACtVou+ffvCYrGgbdu20Gq1AICffvqpWgv96tWrMBgM8Hg88il8qZVosVjAGIPD4YAgCBAEAS6XC6Ioyp9vtVrBGIPb7YbP55M771VdRnq91+uFx+ORn5OWBSo6AUr3YVf9DOnzGWNyGf1+v9zpr+oyVT9DWkZ6ThRFuN1u+P1+eL1euN1uCIIgL+N0OuXv5/V64fV65XJUXcbv98Ptdj9VDukzpGU8Ho/8XasuI32Gz+eDz+eD2+2Wn3O5XDAajfJ39fl8EARBXsZut8tlFgRB/i6CIMifb7PZ5Nf4/X65vIIgPPV6r9crf4bD4YDf75eXkX5D6btIz0nfWRAE+Tv4/X75O0nLVH299HtK64hU19JvKP0OVZeRyi+VT/o9qy4jvV76t+oy0udL/0rvJ31O1bJXfc7n88m/vclkqvZc1X+l7yR9lvSbV3299FzV9U16fdVlqn7nqstU/Z7Sc9I69eT3efI7i6Io14n0PlLZpHVQWheqflbV9U2qZ2kZ6Xer+py0vkjvJ32GtB+RlqlaZqls0v5DWoYxJn9fxpj8N2kb37hxI/r374/vvvsOHTt2RFFRkbz/kJaVflfpdVX3Q1XLKI0xIC0jdRiuuh97ch8j/b9qnUv7Bunzn9yPVV1G2o9V3X9U3cdI+0qpPqT6lF4nLVO1Pqpu/1X3dU6ns9o+pmoZpf1Q1Tp3uVxP/R5V96fS51ddRrqkK32Pqp8h1av0Xat+R+n3lNYPaZ0RRRFWq7Xaby6tM1WzR1pG+s7SOlN1HyndofJb+0Gj0YjMzExcuHAhsIFus9kwbNgw7Ny586kPWrFiBVauXCkfGfl8PvkLxsXFITo6GgCg0+nQr1+/ake2oiji008/xfLlywFUBPrp06eRn58Ph8MhV7wUKiUlJRBFERaLRV6BpM8qKysDAHmSe7vdLq/kJpMJgiDIy1gsFrlCpB2BtDIYjUb5O0srqBRK0ilPqXKcTqccuNIKYzKZ5EqWNiKHw1GtrGazWV5JpJ2jFDzSQYvZbJZDS9qYpHJI7yN9hhS+Xq9XLpv0Ha1WK7xerzyMq9/vlz9fWsZms8kTsUgbjslkgtVqhU6nk1dWaWWUVkCTyQS/3y+XQ3q99D2kZaQySjtg6btKr5fq0+12yxu12WyG1+uVl6n6eqfTKT8n/a5Pvl76TlIISjsU6cDI7XbDZrPJ/0r1IP0r/V7SMtLnS+8vPS89pPeVfmuv1yvf/eFyueTnpH+l95PqrmrZHQ4HPB6PvA47nU54PB7odDo4HA75N5Q+QyqX9JDeW3quavmk93ryfaTXVF1fpbqs+v8nP0NaX6SySutr1d9cWkaqE+l9pO9W9eDMarXKy0hhWHWdkv6V1ldpp2iz2eR1W3ofaR8h7XildVEaQlf6Dfx+vxwKpaWl8sGTtAOu+nrGGMrKyiCKIlasWIExY8Zg7dq16NSpEx48eCDvq4xGo3ygUPX10n5EChnpgEc6yJDeW7q7RPpdpe8kBVfV7Veq16rbtvT50rpddf9RdR8j1Z1UH9J+TFrGYrFUW9+lfYz0nPQ9qq5fUjmqfkbVfYz0XaXf88lySNuv9HsIgiDXq/QZVffD0jIajUbexqUgl34HaRlp3asastLvKdWPtP5VrY+ysjI5V6SDFun3LCkpkcsohX7VOvf7/fIydrtdPrB5cj+o0+lw//59nDt3LnCB7vf7MX78eDRr1gz79+/H/v375dPioijizTffxLVr1+Tlz507h5dffhlutxu5ubno0qULduzYgT59+mD27NkAgF27dmH8+PH48ccfERYWhuLiYjnQnzx1T5RjtVqpUxxHdDod3XXAicLCQvzpT3+S+/wcPXoUsbGxqj/lq1aMMRQUFKi+j4ndbg98L/fVq1dj6dKliI2NxaJFi+TrRm63G3v37q12XS8vLw/r16+X/5aUlISYmBhs2bJFHkbU7XZj165diI6Oxs2bN+WNgDrF8YV6ufNFr9dToCvI5XQiPe0xRFFESUkJXnnlFVy8eBFWqxVffPEFVqxYQYGuEMYYioqKVP/7N0inOGneX1EUq80w9Lz5gJ/82/N+5Cf/ToHOF7vdTpOzcEQ6bUeUcfXGDfzvJm/BVNlR9OzZs+jZsycGDRqEUaNGQafTKVzCxosxBq1WS4HOEwp0vtDkLHyROvqQhudxufDJ8sVoeuUYvl33PSBW1IPZbKa7DzhQtZOemlGgk4CxWq2wWCxKF4NU0mq1FBwKSU1JQYvVS9GhOA29lsfAWFLy3DOUpOExxpCXl6f6+qBAJwEj9dAlfJB6MJMGJoqYtTgGLZIS0Fmfjr/vWo9fEhIo0DnCGJPvHlAzCnQSMNRC50tRURG10BWQ9zgd7y+PRmjhI4QXPETH/AeInDEFfjrY5YbUQlf7AS8FOgkY6Z5Owge6hq4AxrDxwF40vfATwkvSEa5NRXhJBt7buwm/XktUunSkCmlgFzWjQCcBQ7et8YVuWws8q9WKc+fOYd++fbh9+zb8Ph+aR4Th7zFz8O6SeXh38Ty8u2QeXpvxBb6aORNQeYAEC7ptjUMU6HyRRnYifJBGCiOBc/PmTUyYMAHz5s1Dly5dcOTIkYqR+JzOpx6+yiFhifIYY/LoempGgU4CxuFw0H3oHKH70BtWUlISZs+e/ZvjaFCg84ExBp1Op/r6oEAnAUMtdL5IY0+TwEpPT8fSpUvRpUsXHDhw4LnLVR1kiyir0bbQDQYDhg0bhsGDBz/z0bNnT8XGU6dA54s0IQPhgzRhCK/KysowdepUvPXWW7hw4YL8d6/Xi9jYWHTs2BHbtm3j+jsAQGlpKc6cOYOBAwfi8uXLz12OAp0f0uRdaq+PGgd6eno62rVrh/Xr1+P777+v9vjhhx8QHh6O8+fPN0TZn0KBzhdpZiPCB94DvbCwEIsWLUJkZCR++ukn+e/r1q3DmDFjkJycjMjISJw9e1bBUr643NxcDBs27LmjJVKg86PRBrrJZMLNmzef+4bJyckoLCys10K+KAp0vtBY7nwxGAyquIY+f/58HDlyBEDFZZvRo0fj/v37ACpmWlywYIGSxXuK0WxEqakUjDF4PV55MKWLFy9iyJAhz733nwKdHzSWO4co0PlCLXS+SPN48y4qKkoOdLPZjJ49eyIjIwMAcPr06d9s9TYkr8+LmEUxGNlyJMa+NxYzp87EqYRT+PDDD9G3b1+0atWq2tTQT6JA54c0T73a66PWga7T6RAZGYmuXbuie/fu6Nq1KwYMGIDly5fDYDAEsszPRYHOF7fbTUO/ckQtneKeDPTIyEg50E+dOoURI0YoHug+vw/zvpyHcf80DvNC5mFuyFxMCZmC0T1GIy8/Dzqd7nc7Wak9PIJJow90q9WKfv36IT4+HmfOnMGSJUswePBgREdH46OPPoLH4wlkuZ+JAp0vbreberlzRC2BPm/ePBw9ehTAP06537t3D0DFKfeFCxcqWTwAQJ4mD73/395YErIEMSExiAmJweKQxRjwrwNw7frzW+VVUQudH4wxGI1G1ddHrQM9KysLCxYskK8PMcYwatQoCIKAwYMHw1w5529DokDni9lsDopbQYJFQUEBd2O5P3zwAFcre4J7vV5kZWXh448/xjfffCPPD/79999j+PDhSE5ORpcuXbjoFJefmY9x/zoOsSGxiA6JRnRINGJDYvHxP32MpISkF3oPQRBUcYDVGDDGkJmZqfr6qHWg5+fno1u3bsjIyIDVakV2djYiIyPh9/sxePBgRSbloEDnC822xhfeZlsTfD7M27AOrfv1gcftRoFGg06dOuFvf/sb3njjDcycORNAxXq0fPlyhIeHY8+ePVz0A8jNysXwfx2OJSFLqgX6qH8ahWsJ1EJXm0Y/2xpjDOvXr0erVq3Qrl07tGrVCrt27YLX68X+/fsVmZ0UAccAACAASURBVJSDAp0vNNsaX3Q6HVct9MKCAnywejGa/7wbJ48fhygyOJ1OOBwOOByOapdrRFGE0+nkZoerL9VjyOtDsChkERaHLEZsSCxiQ2Ix6D8H4W7y3Rd6Dwp0fjDGUFBQoPr6qHMvd4vFgry8PJSXlweifDVCgc4XQRC4aE2RCj6fj6sdVvz679Hq6km0zbiJCd/Gw+1Q1x0R+37ch77/d19MDpmMKSFTMPB/DsTquNUQ2YudBeGpLgiCYmbIOgV6YmIiRo0ahStXrsBisWDr1q2K9j6lQOdLSUkJ9Hq90sUgldLS0rjZaRn1BnSOi0a73LsI16WhyTdLkJycrHSxauzcxXPYsnILtq3chp9P/PzCYQ4Afr+fq0sgjZkoirh3757q66PWgW4ymTBy5EjMmDEDK1asgNfrRf/+/RWdLpMCnS9er5ebACEVk+VwscNiDHv278c7R3cjojgNEYUpaPPwCqYsWwI0okYrtdD5wRiDzWZTfZ3UOtBTUlLw9ddf48yZM1i+fDkAYNCgQYr0bpdQoPPFaDRycSmGVMjLy1P8/m0AsFksCJ89De9n30FHzUN0yH+ADkUpaL0mDo8fqq+VXluCIKg+QIKFKIpIT0/n44C3Dmod6MXFxfjkk0+wZ88efPvtt8jPz0f37t0V7dVMgc4XURRVv4EEE14CJCcnByMWROHT3VsxfucWjN+1BeN3b8WIlXG4qNA8EErgoS7IP/DUYbS26tTLfffu3WjTpg1atWqFjh07Ys+ePYEs6++iQOdLaWmpYqMGkqdlZGRwcQmEMVZxsCcITz0aU8g1xDV0t9sNh8PxzOc8Hg8X6wMPRFHEw4cPVd8AqXMv98LCQiQmJkKr1QaifDVCgc4Xv98fFEe9wcLj8TSqwORdoG9bO3jwIIYMGYL+/ftj165d1e448Xg8GDNmDLZt2xawz1ebYBjVssaB7nK5cPHiRVy4cAHXrl1DYmKi/Lhx44aiRzgU6Hyh+9D5otPp6DZCjgR6pLjDhw8jKSkJt2/fRsuWLavNzX7o0CG0bt2ai2F0ecAYQ35+fuNroZeVlWHWrFmYMWMGmjVrhsjISEyfPh3h4eHo0qULBTqRMcaoRcgRte+sSM1U3fZmzJiBH3/8EUDFHUqTJk3Chg0buJuKVknBcLBb61Puer0ec+bMkW9TczgcGDduHOx2e8AK+3so0PliMplgNBqVLgaplJ+fz0Uvd1KhocZy1+l0ePvtt+U55devX4/du3fj2LFjmDdvXsA/Xw1EUURGRobqD3prHeiPHz/G6NGj5QB3uVzo2bMn3bZGZHQfOl/sdjudMeGI1DmwrKwMhYWFKC0tlevH4/GguLgYGo2mThMcud1ujBs3Dt9++y1EUUROTg46d+4MrVaLXbt2YcaMGXA61TVCX6AoOYZKfal1oHs8HowfPx7Dhw/H4cOHMWTIEIwePVrR0xYU6Hyx2+2w2WxKF4NUMhgMQXFaMViIooiioiJ8+OGHGDp0KJo3b45Tp04BAK5fv44+ffpg8ODB6NixIx48eFDj92eMYcmSJZg2bZrcOfX48eNo06YNevfujRYtWuCVV17Bjh076vNrqRJjDEVFRY23hS69ePPmzfjqq6+wY8eO594e0VAo0Pni9/vpFC9HqJc7fzweD0pKKnaziYmJ6NmzJwRBqLbtbN26FTNmzHih9zMZjXJLc9OmTQgLC4NGo4Fer4fb7YbP54PNZoPFYsHOnTsxderUoOjdXR9cLpfqt48aB7ogCE+tAFV/BK/Xq9itShTofKFe7nzRarV0GyFHnhzo5/bt2+jVq5dcR/fv38eOHTswYMCAF25F9xgwAJt27QQYQ3x8PEaPHo3x48dj5MiRuHXrVrVlb9++jUOHDtXb91EzURSRl5fX+Froubm5WLRoESwWC0wmU7WH1WrFmjVrcOPGjYYo+1Mo0PlC19D5ws1Y7gRA9btABEHAkCFDsG/fPvn5pKQkLFmyBO3bt0d+fr78d1EQYLFYnmpNJiUmoukPK9FzeSys5f/ojEp3m/y+RjuWe3Z2Nv7yl78gNDQUHTp0qPYIDQ3Fn/70JyQmJjZE2Z9Cgc4Xi8WiaCdJUl1RURG10DkitdAZY5g7dy4+//zzZx4A37hxAzNnzpT/n5ycjFZt3q+2bQl+P75eHY9WKdfQZPcPONuIhtCtD4wx5Obmqv6At8aB7vP5kJGRgdTUVKSlpT31SE1NVeyaDAU6X3w+H11D54jarxEyxqDX65GcnBwUt0MyxiAIAtauXfvUTJVVD7yuXbuGL774AkBFcK/cvRP/Z2UMDh0/BlTWZ35uLt5fGYvw4jS0y76DofOj4Pd4GvYLqZzD4VD19gHUw9CvPKFA54vJZKLZ1jii9vvQExIS0LVrV4wdOxZdu3ZFWlra776G5x20KIrQaDT4t3/7N0ycOBHz58/H5s2bwRjDkSNHMHnyZCxYsAAtWrTA8ePHAQDGsnK8v3A22utSMWRpDFw2G8AYln2/Fi2unEBE0SOEFz1C861rkXRNmTOlatToZ1vjEQU6XwRBoNukOOL1erkOuN+j0Wig0+kAABs2bMCECRN+c/mEhAS0bNkSLVq0gEajaYgi1ghjDA6HA8eOHcPhw4dx4MABeXhWg8GAU6dO4ciRI9X2aSu/+xYtLvyMCH06mmz5DlevXoXDakN4fCzaF6UgQpeKCP1jNL93CTO//45a6TWg9u0DoEAnAVReXo7S0lKli0EqZWVlqbqFXtXhw4cxZsyY31xGq9XiypUreO2115Cdnd1AJXtxNZ1tzVxaht6rlqFd1m1EFKagzaNETP5mJfZv3Ya/zvoSzTd9i2Y/rEKzH1ah+fZ1+HO3zsjPyQngNwgeoiji0aNHjbuFbrfbcfjwYeTk5MBmsyE5OVnRIxwKdL5QC50vPp9P9S0Q4B+jUl68ePF3l7XZbHjzzTe5DPSa1sXZixfRZN8mdCrNRLj2ESJKM/He2uW4e/MWys1mlJtMKDcZ5UdpuZE6QdaAJwjOZtQ60AVBwMyZM9GyZUusXr0aZrMZQ4YMUXRwGQp0vtB86HzhZT70uhAEAZMmTcKCBQte6GDRZDJxG+h+v/+FQ50xhvb9++DtIzvQ8sRetDj+I1qc2Is3dq7DlDlfg6m8Zam0Rj8femZmJiZOnIgjR45gxYoVAIBBgwYpOpAIBTpf6P5Xvqh9ZyUIAuLi4jB27Fg4nU4wxmCymFBSVgKv79kHKjwHek23jZ+PHsXe/Qdw4OBBHDh4CAcOHsKP+/Yh8fp12s7qwZMD/ahRrQM9IyMDX331FX755ResXr0aXq8XvXv3pkAnMp1Oh8LCQqWLQSrdvXtX1acV9+7di5deegmHDx3GxUsXMXXKVPT5Wx+MfW0shn44FOkZ6U+9xm63480330RBQYECJf5tNb2GTgJHFEVcu3ZN9ZcIax3oXq8XX3zxBQYMGIBhw4Zh4sSJmDhxIs2HTqpR+xFvMFH7GZNz585h1qxZmPX1LDR5pQlCQ0KxKGQRokOiMStkFnr8pQe+W/odfvzxR9iddhQWFmLNmjX4j//4DyxduhQpKSlKfwXCMTVvG5I6dYorKSnB8uXLMW7cOMTHxys+/RwFOl+MRiPdh86RvLy8oOjl7vF6MPT1oYgJiZEfi0MWY2LIRHQI6YBP/vkTjO89Hok3EhEVFYV58+YhKioKV69eVbro1QTDKd5g0WjvQ2eMwePxwOPxyD0opZVS6Z0FBTohzxcs4ZGVn4XP/vMzRIdEy4+YkBjMDpmNkSEjsSxkGcb/03isXroaoijKj2D5/iQwgmH9qHGga7VahIeHIzw8HO+88w7eeusthIWF4W9/+xvCwsJoPnQiMxgM8kAgRHkpKSmq7+UOAMUlxRjxnyOeCvRZIbMwIGQAloQsQUxIDL7o+gX8Ar+3bfl8PtW3CIOFKIq4fft247uG7vf7odPpkJ2djU8//RRnzpyBTqfDyZMn8emnnyra6YYCnS9+v5/ug+WI2+0OilaIIAr4uMvHmBkyE4tDFiM2JBZLQpZgSMgQjAoZhcUhixEdEo3pXaZzvf7RWQO+BMO88LW+hp6WloaZM2dWO6IZPHiworNrUaDzxWazKd6vgvyDXq9XfQtE8vDhQ/R/vT8GhwzGJyGfoE9IH3QP6Y7okGjEhsRibshcTBk7BYLI7/cVBIFa6JxgjKGwsFD1B1i1DvSSkhJ8+OGHFWMJOxxISEhAu3btqIVOZGrvVR1sgi08svKycGT/EaxfuR7v/T/vYV7IPCwKWYQ5IXPQ9Q9dcf/+faWLSFQkGLaPOvVyv3DhAiIjIxEeHo7evXvj119/DVQ5XwgFOl+MRmNQTHMZLPLy8rg+BV1boiji7OmzmNBlAsa+ORaTek/CjRs3lC7W76IWOj8abS/3J7lcLphMJi6uP1Cg84WuofPF4/EE9RkTu8sOnUEHl8eldFFeSDDXhRq5XOpYb35LrQO9tLQUUVFRiIqKwty5czF37lwsXbqUerkTmd1uh91uV7oYpJLBYAiaa+jBgO5D5wdjDFqtVvX1UetAt9vtOHbsGI4dO4bjx49j4cKFGDt2LI0UR2TUQucLhTlf1B4ewaZRt9CfJIoiRo0aRWO5E1l5eTnKysqULkajcvv2bUyfPh3r16+vFuAOhwOxsbH4/PPPcevWLQVLSCR0DZ0f0nzoaj/ordNY7pmZmcjMzER2djZu376N8PBwRU+xUqDzRRRF1W8gajN58mQ0adIEgwcPlkdutNvtGDx4MBYsWIBTp07hyJEj1DrkANUBX5Qe6bQ+1DrQi4qKEBYWJo8a17lzZ+zcuVPRlZQCnS9ms1nRcQkakt/vR2lpKbRabbUOoj6fD2VlZTCZTA2ybTDGcOTIEYwaNUreQZ04cQJjx47Fo0ePUFxcTEHCCWqh84MxhuzsbNXXR60DXdpRSR2fnE4nLBYLXUMnssY0EtZ3332H7t27IzIyEmPGjJEH1Nm6dSv++te/IjIyEg6Ho0HKcvDgQYwcOVIO9MWLF6Nt27YYOXIkIiIicPDgwQYpByFqEgxnE2sd6JmZmVi1alW1F06aNImuoROZXq9HcXGx0sVoEMnJySgsLITT6cTAgQOxZs0aABX3fv/yyy+IjIxssFHzngz02bNno127drh//z5u3LiBVq1awWazNUhZyPPRWO78EEURN2/eVH191CrQc3NzsWbNGgwcOBAJCQk4c+YMTp48idDQULqGTmSNdaS4yZMnY8mSJfL/s7Ky0LNnzwYL9EOHDlU75b5s2TJ89NFHACo2+LZt20Kj0TRIWQhRC7WHOVDLQP/pp58QGhqKN954AyNGjMDQoUMxZMgQbN++PdDl/U0U6HwpKSmBXq9XuhgNqqCgAG3btkVmZqb8t8zMzIC10E3l5ciq8lkulws7duzAkCFDYDQawRjD7du30aVLF1y9ehWnT59Ghw4d4HQ6670spGb8fn9QhEgwEEURd+/eVf1p91oFOmMMZrMZ9+/fl1thPLTGKND5wsM60ZA8Hg8GDBiAXbt2VfveUqAH4jT30hXLMfCz8fKOaMaMGfjzn/+MP/7xj3jvvfdQWloKv9+PVatWISIiAj169MC1a9fqvRyEqJ3awxyoRaCbTCZs3LgRBoMBa9euxcqVK7Fq1SqsXLkS33//PY0UR2QlJSUwGAxKF6NBeL1eTJs2DbGxsU9tAzk5OejVq1e9D49cVqxHj2+Xo+m6eNy9eRMAoNVq5VtJMzIy5IF9RFHEuXPnoNVq67UMpPaohc4PURRx//591ddHjQPdbDZj27Zt0Ov1WLduHb777jv5sWnTJurlThQliiKOHz+OsWPHVmspb9iwAUOHDsXw4cMxbNgwxMbG1nkUu+vXryMtNRUAEBMTg+bNm+P48eM4evSoPNNXZmYmoqOj8dZbb2HdunX1eu362OlTeOfwDrS4exGzvl0Nv9dbb+9NSGMTDGcT62WkuKo/BN2HTiQlJSUN3stdEAQsWbIETZo0wYQJE+T1saioCMnJyXj8+DGmTJmClStX1mldZaKIj2MXYcqSWDBRxOIlSzBu3DiMHz8eH330EXbs2AEASExMxMiRI/Hxxx9j/PjxePjwYX18TYh+PzpPnYQPsm6jc1kW3pg7DTmZWb/5mtTUVHgp9LlBLXR+iKKI27dvq/60e60D3WAwYOjQoRg6dCjGjh2LIUOGYMyYMZgyZQry8/MDWOTno0DniyAIim0gsbGx+PTTT58Kba/Xi5YtW9Z5qt+C3Fy8vXoJmi1fBG1efp3eqzaO/3wUzfZtQbg2FeGFKWhz/zJi1n4H8Td+b6/XGxStEEICwePxKF2EOqvT5CyDBg3CqlWrcPXqVcTFxWHUqFGIi4vD8OHDFflxKND5YjKZFJsPPTo6+pmBXlBQgB49etT59sqPJ09C65RraHnrHBavjK/Te9WUy+HAuNXL0TrzFsIN6QjTpSK0OA2dv49HUUEBgIrwPnr0KB48eCC/Lj8/nybL4QiNFMcPURSRkZGh+vqo08Ayc+fOrbaDGDlyJARBwODBgxUZ8pMCnS+CICgWIIsWLXpmoH/xxReYPHlynd770b17+GDDNwgtSkFoYTLaLp4PbV5end6zJrIzMtDy80/QbttatNv4TcVjyxr8fepnOHbiBADg3r17+MMf/oC4uDj5ddRC5wvVBV8adQu9oKAAvXr1QnZ2NhhjSE9PR1hYGARBwLBhwxQZMY4CnS9Go1Gx2daio6Mxfvz4an/zer2IiIhAWlpard9X8Pvx3Z5dePfCT+ikS0On4jS8cXg7dh46BCY0zNG9IAgV4+SbzPJ4+WazGSazGW6PB16vF5MnT8bo0aOxevVq+XW5ublBMQFFsKBr6PwQRRFpaWmqr49aBzpjDBs2bEDz5s3Rrl07NGvWDHv37oXf78fJkycV6XxDgc6Xhmqhi6KIkioD2FgsFsyYMQMjRoxAaWmpvHJfvHgRzZo1q7Zu3rp1C0uWLMG6devkv7ndbuzatQtz587Fnj17qi1fXlaGVrO/Qkf9Y4QWpiC0KAUR5jy0++oLWEymgH/XF7F9+3Zs3LgRK1aswIoVK+S/u91uahVypLGN08A7mg8dFS31K1euQK/XK76CUqDzxW63N8iY4TnZ2Rj5xSS4XC4IgoAJEybgpZdewl/+8heEhYWhtLQUALBp0yZs27at2mu//PJLzJkzRz67BABpaWmIjo7G/v370aNHD0yZMkV+7se9e/GXXt3x+sej8PpHI/H6uJF4/ZNReLV3D5w+fTrg3/X3lJaWYvTo0SgpKUFcXFy13vwGg0H1vXiDiSiKqm8RBgvGGIqKilRfH3UK9Ly8POzdu1e+H339+vU0sAyReb3ewJ+pYQxfLpyPv0TPxtXKEdAMBgMKCwtRVFSEwsJCeZ202WxPXSdzu90oKytD79695bL6fD45BO/cuYOmTZvKM6WZzWYUFWhQlF9Q/aHRKDqPgWT79u1o1aoVli1bhoiICHTs2FHuGOd0OlW/wwomSjeASHU2m0319VHrQDcajejWrRtmzJiBtWvX4ttvv8WGDRso0ImsIXq5Zz1KxQdrVqBV2g2Mi10Ev7vmHVv0ej169er1zIMPaRIiXnuHO1wOJJxNwNGfj6K0vBQajQaHDh3C4cOH5TkWcnNzAVScTeP1ezRG1MudH4wxZGRkNN5Af/ToEb766iuudhAU6HwJ9H3oTBSxdtdOND1zEBFlWWgaH4NHtRi45XmB/uDBA7Ro0QLZ2dny31wuF06dOMHFhp+Vk4XhbYZjyP8cgtH/YzT6vt4Xly9dlp9funQpVq1aJf+/6pmHZ5WfWowNi35rvgTDoEu1DnSz2Yxp06bh8ePHcm9maXYnpVCg88XhcAT0NLSxvAxtZkxGR10qIjTJeP9RIqYuXACxhgeZBoMBvXv3rnZwWlJSgn79+uHq1avVlj16/Dhaz5yC7CoznCnB7/djZPhITAuZhsUhixEbEou5IXMx6PVB0OorxmvXaDQoLCyUX1NWVga9Xo8VK1bg448/RklJxeYtCAJOnjyJiRMnYubMmSiovJedBJYgCBTqnGCMQavVqr4+ah3oWq0Wr732Gt5880107NgR7du3R48ePRRtsVOg88Xv9wd0fdiweTNaXT2JTiUZ6KRNRbg+He9/vxwZKSkv/B5erxe5ubno2rWr3IHP4/Fg0KBB2Lx5M4B/zJPs93jwUVwsXtq9Hpv27wdT8HTphcsXMPb/GouYkBhEh0QjOiQaMSExmPw/JmPLpi3PfI3P50NCQgJGjhyJN954Qz7z4HA4sGvXLvz8889Ys2YNevTogfLy8ob8Oo2S2sMj2DTqXu5erxeZmZnIyclBTk4OsrOzkZWVRS10IisvL5d7mNc3u9WKXl9Px9/2bcS7x/fgnaO78O7xH/G/4xZg9eZNEF/wnvDvv/8eYWFhePvtt9GtWzcYjUbcunULf/3rX9GtWzf07NkT48ePh9frxd2kJDRZG4cIUw7+/skYmAL03V7Ehs0bMDFkImJDYqsHeshkLI5a/MzXZGdnw+PxwGQyISIiotqc7ZKysjJ06tTpmc+R+kX3ofNDFEWkpKSo/i6QOvVydzqd+OGHH7Bo0SJs374dTqczUOV8IRTojYfVZsN3a9Zg5YoVWBn/j8eK5cux/8CBF94wvV4vnE4nPB4PXC4XGGMQBEH+v9PphNvthigImBSzEK3uXUInXSpaXD6BDVs2A6IyB7C3797GqP81qloLPTYkFhP/eSL27tn7m68tKytDaGhotdB2uVxYvHgxPvzwQyxatCgoRs0ipCaC4YxJrQPd7/fjs88+Q+/evfHtt9+iV69emDx5Mk2fSmRWqxUmTgZbqau83Fw0Xx6NjtpHCNcko0P+AwxcuUyxwWQYYxjXcxwmhUzC4pDFWBKyBF+HfI1+b/dDufnZp8vz8/Ph8/meGeiCICArKwunTp3CxIkTg6beeOb3+4MiRIIBjeWemYkxY8bI1x1cLhciIyNhtVoDVtjfQ4HOB6/XC41Gg9TU1Gq3rdntdmRmZiIjI0Pxszk1wRjDnGVL8G7SGXQsSkH7vHvoUJiC1zZ/g9MJCYqVq1hfjM/7f46+/9YXA/5tAEa1G4UHDx88d3mPxwPGGIxGI8LDw6v13pf4fD4MGTIEV65cCWTRCeGO2+1Wugh1VutAz8rKqhboDocD3bp1o0Bv5BhjOHz4MLp164aRI0eiTZs2SE1NhcvlwuzZszFgwAAMGDAAgwYNUnRdqQljeTkmrFiKwTs2YtjOTRi6cyOG7tqIgVvWYdE3q35zytJAszvs0Ov0MOgMMFufPSHS49RU2KxWpKamwm63Izs7Gx988AFu3boFr9cLm82GR48ewel0IjU1FR988AFSatCxkNQOXUPnhyiKuHXrVuO9hu73+zFhwgRERkZi1qxZ6Ny5M6KioqhTXCPHGIPJZJJHJVu7di0+//xzCIKA0tJSCIIAh8OB7t2749ixY0oX94UwxuD1eOB1OuF1OP7xcLq4v3fV7XBg4KzpWLNxAwDg7NmzaN68Of74xz/itddew6FDh1BaWooxY8agU6dOCA0NxZYtW1S/YyOkMapTpzi32419+/Zh6dKlOHLkiOI7Nwp0vtjtdixYsABTp06t9ne3241u3brh1KlTCpWs8UhKSkLTDavQe9VSPLxzFy6XCxaLBXa7HRaLRe785vF4YLFY5CFuSeDRfej8EEURjx8/Vv0ZkxoHus/nQ3Z2tvzIzc1FXl4ecnNzkZubSy10IsvPz0doaOhT05Xu2bMHvXv3VtV19JqQ+go8evQIBQUF8sbFGENxcTFSUlJQXFzcINvKuEXz0DolEW//uAGHf/pJ0XvnSXUU5nxplGO5FxcXIzIy8pmPwYMHKzrfMgU6P3w+H/r37489e/ZU+/vDhw/RsWNHeXzxYLR+/Xr06tULEyZMQIcOHeQOZhqNBl27dsW4cePQuXNnFBUVBbQcKffu4d3vliFUl4b2+Q/w3qhhsJmffZ2dNDy6hs4PURSRnJys+vqocaCLogir1frMR0NMlflbKNCV43G75UsuHo8HEyZMwKJFi6od4Ekt9mDvQV1WViZvC1u3bsWgQYMAANOmTUNcXBwYY4iKisKcOXMCVgZREDA7fjla3TqHCO0jdCrJQNPv43H58uWAfSapGbW3BoNNMJwxrPN86DyhQFfO9l27MG/ePADAvn378C//8i8YNWoURo8ejb1798Lj8WDo0KF4+eWXMW3aNEyaNAkPazGRitrs2LEDkyZNAgBERkbKY8NfvnwZ/fv3D1iLICczE22/WYaOulSEah4irOgRWlw/hQnLFsMbBLfnBAO6hs4Pxli1y2NqRYFO6sxusWLEd/FoMn0SDMXFMBgMSEpKwvnz53H27FlkZGRAEASkpaXhxo0buHLlCi5fvoyysjKlix5Q5eXleOedd3Dz5k0AQJ8+feSDmEePHmHQoEEBGeueMYYd+/bhvQWz0HHb9+i4eQ1Ct6zBe2vi0H7KROTSsK5coNnt+GK1WlVfH7UKdF6PYijQlZF4/Tre3bYWLW+cxg/bt8kbhcvlCorBGmrDarWiV69e2Lx5s/x79OjRQz7lffHixd9soRuNRixduhSfffYZNBoNgIrtbtu2bRg3bhw+/vhjxMTEPPfOkrKyMuRkZCDncTpyHqcjLzMLN65cQebjdBrWlROiKKo+QIIFYwwajYbbbHtRNQ50v9+PPXv2YPXq1bhw4QJXO2wK9IbHRBGj581B27Qb6FDwEN2WLISxclpOp9MZFNelXoTDbkdR5VSlfr8fM2bMwNKlS6ttWDNnzsTq1asBAAsWLEBUVNRz3y8/Px8TJ07EK6+8gjt37gCoOEXbt29f7Ny5E6mpqcjMzKzRDshisah+hxVMqIXOD8YYSktLVV8fNQ50xhgSExMxffp0vPzyy2jbti2GakRe7wAAIABJREFUDx+OnTt3BnTu6xdBgd7w7iZeR5vt6xBamIKI4jQ03b8ZP588CaDi9i2lO0o+j16vx6BBg9C9e3fcunXrqedjY2Px0UcfvfAp8UvXrmFm9CIwxrBx40b84Q9/wJgxYzBu3DgsXLgQQMX62blzZwwfPhzh4eHV5ip/FqvVivDwcNy+fRtARYuuX79+uHjxYq1O1RsMBhowhiN0DZ0fjDEUFRWpvj7qPLBMamoq4uPj8dZbb+G///u/6ba1RkTw+TB37bdo8WsCOunTEaF9hI4FDzEoZj58ropR1Hg6g1OV2WzGqVOn8Nprr+H48ePVnrt79y5eeuklNG/e/IXX535fz8Bfv56CYo0GWVlZOHv2LBISEnD69Glcv35dXq6oqAgJCQkoLi7+3fe0WCwIDQ2VA10QBCxcuBADBgzAhx9+iIULF9Zoe7NardRC5wi10PnBGIPZbFZ9fdQq0B0OB9LS0nDq1ClMmzYNAwcOxPDhw7FhwwYaWKYRycnOwf8Z2h9/P7kXbx/bXfE48SP+++vJOH/qNNxuN/en3Fu2bIkTJ07I/3e73Rg+fDi++eYbtGrV6oUC88LJX9Bq3xa0Tr6GGYsW1tuUqk8GOmMMNpsNbrcbJSUlaN26Na5du/bC71deXk4tdI7QNXR+MMZgMBhUXx+1ug999uzZ+Otf/4qZM2fi/Pnz3Jw6okBvWLl5uZg3JwpRs2YhatbXlY9ZmDVtOh48fAi32y1P3sOrFi1aVAv0bdu2Yc2aNThx4gTee++93w10r8uNr1atQItb5xBenIYPli6E5hmzmNWGxWJBWFgY7t69+8zn+/Tpg927d7/w+5nNZgp0jjDG6IwJR8rLy7nIsbqo1TX0n376CYMGDcLw4cMxf/58HDt2DPn5+YrvvCnQ+WKz2bifUa1qoNtsNgwcOBCZmZnYsmUL3n77bXn6V1EUsTQ2FncqW8uSzPR0/D1mDsKL0xBR9Ahvnz6A9Tu21WqIVWNZGdyV25DP50NWVhZat26NX375BVarFW63G/fu3YPBYMCDBw/QsmXLGs2KptfrKdA5wktDiFTkWmFhoeoPsOo021phYSFOnTqF1atXo3v37ujXr5+iOwwKdL74/f6A3Gddn1q2bClPEmO1WtGmTRt06dIF77zzDv75n/8ZGzduBAAYivX475GDsWTHNgi+iu/ERBGzli1Gq/uXEaF/jAhdKsJLMtBx4WyU6vU1KwhjmL1sKbbt2Q3GGLKzsxEeHo5XX30VLVu2xKpVq2Cz2TB58mT06dMHvXv3xs8//1yjHZA0Hzrhg9rDI9i4XC7Vbx+1DnSj0Yj79+/j8OHDaNOmDV599VWEhYUpOuMaBTpfHA4Ht/c8u91uJCcn45VXXsHy5cvlCWScTiccDgd27NiBN954Q75zY+HixXjvwWW8Pu1zaPMLAAA6TSHe/XICXj2wCW8c3FrxOLoL/9+Cadh3+HCNylOUn49mMVFo99UXsFsqOq/ZbDY4nU7Y7Xa5cyFjDHa7vVa/q8Fg4P4AqzERBIFCnRNSL3e110etrqH/8MMPaNWqFcLDwzF16lTs27cPBQUFiu8sKND5Ul5ejqNHj+Lnn3+udjnGaDTiwIEDOH36tGK94A0GA8aPH49x48Zh3LhxiIuLq/b8nTt3sHDhQgiCgLJiPbquXoaO2hS0TkpA/LrvwRiDVqvFgSNHsO/gAew/eLDycQB7Dx9CUlJSjcrz7aaNaHbpGFqf3IejT/S6ry/Uy50vVBf8YIzBZDIpXYw6q3GgC4KA69ev4/Hjx7DZbIqHeFUU6HzZu3cv+vTpg6ZNm8q3adntdvTu3RtTp07FJ598gri4OEV2bIwxuCsnlPF4PE+dWRJFUe4Qd/jkSbx7ZAciitPQseABuq9cgnKDod7KUmYwoOuSheigeYg2qdcxbtUK+ANwoKPRaBS9rZRURy10fkiXuRrtKXceUaDzxev1oqSkBG+//Ta0Wi0A4Nq1axg2bBg8Hg/8fj/ef/99ZNdTr/BAiRj/CdrnP0C4JhmddGl4Y/cPOPHLL/X2/gcPHUSzn3ahkz4dnQzpeGPZAqQ8qP+Ja9S+syIkkIJh+6BAJwFjt9uRmZmJpk2byoF+9epVjBgxAh6PB263G3/+859x6dIlhUv6fPt37MTbO77H+8lX0ebeZbx/7xJa3r+MD8Z/BHs9zC0uCgIGxMWiXc4dRGhTEaFNRfucuxg7ZxaEeu6PUlxczNUZtcaOernzg2Zb4xAFOl/cbjdyc3PRpEkTOdDNZjN69OiBqKgoTJ8+HX/+859x8eJFhUv6fMeOHsXIKZMxYV4UJsyfi8mLY/Dl4hiM+Ww8rBZLnd//2tWreGnKeDQ5vB1N9m9B0/1b0OTgNrw+6RM8uPPs+89ry2QyqX6HFUyoLvjRaMdy5xkFOl9MJhPS0tLwzjvvyIEOACUlJVi9ejWuXbuG9u3by3OE8475/di3Zw+O//Rztb/n5uYiPj4ev/76a43f8/qNG/hu9WqsjY/HmviV8uPbVauQUc/TnObk5NA1dI74/X4KdU6Iooi0tDTV1wcFOqlXhuJiuYOZx+NBdnY2/v73v8uns0RRhMPhgCiKSE1NRWRkJPeDzwAVO9+RI0ciNDQUffr2lTeY4uJidOvWDS+//DKWLVumcCl/m8PhUH0LJJjQWO58sdlsqq8PCnRSb9wuFwZ8+jESb1bcsnXs2DGEhYXhj3/8IyIjI3Hx4kW43W5ERUVhyJAhCA8Pr9FY5EqSbmvRarUYNWqUPICSIAhwOp1YvHgxli5dqnApf1tZWRmNFMcRtbcGgwljDHq9ngKdJxToykq6mYSXly/EJzGLAFTcb67T6WC322EymeSWu9PphNFoVHyo4NrQ6XQYOXLkU8EYHR3NfaCXlJRQoHOEOsXxgzEGnU6n+voIeKD7fD6sW7cOY8eOxZgxY7B3714wxlBcXIxx48Zh9OjRGD16NEaOHImsrKxqrxVFEefPn8e4ceMwduxYnDlzBowxHDhwAMOGDcPo0aMxY8YMuecuBbpyREHAwGlT8X7GTbTZ+A1S79+D3eGAw+FQumj1qiaBLooirl599sZVW6Io4tatW4iLi0NiYmKNAlqn01Evd47QbGv8YIwhPz9f9WdNAh7oHo8HmzZtwp07d3Dnzh20atUKDx8+hM/ng0ajQUFBAa5cuYLQ0FB5mE1JTk4O+vfvj6SkJGRlZcmdFqZPn449e/aguLgYWq1W3igo0JXz67VENN/yHcKKH6P5lRNYvOEH2KzWoAv04uLiaqfcJTExMU8FeuL1/5+9946u4srzfXnvrjuz3rrzuufeeWve3O6eXq+ng91uJ0wwJggJBEICJJLIyWByRiBhggERbMAmOIEMTQ4mmmSbnIMBIUAJ5ZyOdKSTU9Wp+rw/xKmWLIEJCiWxP2vVsjmqsKv2rv2t396//ftdJXDKeIqfIvf503Lu3DkCAwP5/PPP6d27txaH/mkQFrq+EHPo+kFY6M9J9+7d2bJlS7XfFi1axAcffFDtN1VVWblyJQsWLCAzM5PMzEwt3eCcOXP4+9//TkFBQbUIX0LQG4dTJ79n9PxIWt+9QEBBIp2Lk3llxgRyMzOblUXoC/c6bNiwavelqqpmofs6BFVVGTRtCv/5+QpOnD5VZ2WYPHkyu3fvBirX9I8fP/6p8yf4nBEF+kBY6PpBVVUsFkuTr48GFfSMjAzatWtHcZVMVB6Ph/79+3Pv3r1q+3q9XgIDA3nllVeYOXMmHTp0YPPmzaiqyv79+5k4cSKDBw9m1KhR2lxsbm4uKSkpdVlkwS9gt1ppP6Av/xk1g65lafjnJ+BflEyrW2dY+MlKnM3EQldVlU2bNtGzZ0/+8z//kxEjRmA2myktLWXs2LH89a9/5bXXXmPhwoXIsszNK1dotfULOpU8pEfkrDoL5Tpr1iztPTh37hwtW7Z86lUCIn2qvhCCrh986VOben3YbLaGEXS73U6/fv3Yvn17td9TUlJo27Ytpp9F3fJ6vbz33nvMmzcPVVVJTk6md+/eeL1eLQayw+GgQ4cOmsWSm5vL2bNnycvLw+l0aukiTSYTqqpiNBq1LFZerxdJkrDZbCiKogXm9+3rdDrxeDwoioLZbMbr9Wr72Gw2vF4vLpcLp9OJ1+vFZDJp+0Kl45fH40GSJOx2e7V9rFYriqLgdDpxuVxaObxeL2azGUVRsNlsyLKsXaNqWX1JNux2Ox6PB5fLhcPhQJZlbDYbqqpqcfZ9Gc88Ho92Dd8+NpsNSZJwOBzVylG1jDabDY/Hg9Pp1O7V9/zsNjtHThznf3UP4M+rFtNq72be3vk1b+38mjf3fEO790eQnJio3avb7da8wn336iuPLMvadapew2QyIcsyDocDSZK0e5JlGYvFot2zLMu43W4tpKzVakWSJG0f3zOs+v9ms7nac/F4PHg8nmrPzWw2I0kSTqeT7OxsYmNjiYuLIzY2FrPZjNVq5ebNm9y7d4+7d++SnJyMy+lk3tpPefvKCTpnxfHO7hiOHjqEoii43W7tfL7695XH9zdfXfj28d2XJElcvHiRjh07Mm/ePLp3787rr7+OwWCodrzvfL426ItZbzAYtHZit9u1fXzH+tpJ1eN95/PFvPedy3ce3z6+331t0Xdc1X2q3ovvGr769pX15/v46svr9Wrt3eFwaGV1uVzaNXxtwXceX11WbVO+tuG7H7fbXe1987VJXxvzXUNVVcxmM7IsYzKZ8Hq92j349ldVlfLycu08iqJox/veW99qCV+797XJqv2Qz1pUFAWXy6WV0dd/+PqoqmV0OBwoikJ5ebl2rar90M+v4bvnqv2Y753y9WNV+wi3261dz7e8y7dv1frwvbdWqxVAe+ZV+zrfc/Cdx1dnVftT3z6+a/j2cbvd2r36ymixWLQ68L3/vvrwPTNfP+C7RtXr++ojKytL6wMcDodW51X3qdqP+fpRX334yuFru1Wfta9efe9C1edvNBqr3bPvPava5nz7+Nq57/30HSfLMgaDgaSkJM6ePVu/gq6qKrNmzWLx4sU1LIRt27axbNmyakOVPsGeO3eutrbXZDIxYMCAaoExvF4v3bp1Y9myZZqgx8TEcOHCBUpLS7XK9A3XJyUlaXncfQ20sLAQr9dLamqqFqDf6/ViMBiwWCxIkkTmo6Hj1EeBPvLy8vB4PJhMJsrKynC73aSmpuLxeMjIyAAqs3nZbDbtGh6Ph7S0NM13QJZlysrKqKiowGazkZ+fj8fjITMzE6/XS0FBAU6nk4qKCsrKyrDb7eTn5yPLMjk5OUiSRFFREVarlYqKCkpKSnC5XFoKwNzcXFwuF8XFxZjNZsxmM0WP1oj7zpOfn4/D4cBgMFBRUYHdbqegoEB7RpIkUVBQgN1up7y8HKPRiMvl0pJ8ZKSk0u+jD3ll6+f8Pmo6Y8aM5ciePRzas5eDe/awZ9curl69qt2ryWTC7XZTXFys3avL5aKgoACXy4XZbMZoNOLxeLQ68u1TWlqK3W7XyutyucjJycHlcpGXl6cdbzabtTLa7XaysrJqHG80GrW/2Ww2CgsLcbvdWCwWLBYLTqdTe25ZWVlYrVbKysqQJEn7APA924qKCkpLS7VOwCvL5GRk8sbsybRPukH72Au8c+17+kVGYDdVls9ut1NWVkZZWZn2XG02GyaTCbvdrrUJg8FAWVkZZrMZk8mEzWbD4XCQkJDA3r17OXv2LAMGDKCoqAiLxaIdX1ZWhs1mo6SkBKvVitFoxGKxkJqaqj0HX/v0/buiogKz2YzFYqG0tBSHw0FxcTE2m007X3l5OeXl5VitVkpLS3E6nRgMBux2u3YPvvbq26fqsy8tLdXuxXcN3/tjMBiwWq1aW/S1BV99+dq7xWLR9vHdm8vloqSkBLfbTUFBARaLhbKyMq0ufdfIz8/X3hHf87ZYLHg8HoqKinA6nVp7KSwsxOl0au+Xrx9xOp1kZmbidru199LXpr1eLw8fPtQ+/nzCXlUwvF4vKSkpeDweCgoKcDgcOJ1OzWExLS0NRVHIyspCkiTKy8u1Tt3XD/mSiPjK6GsrHo+H1NRUJEkiKysLRVEoLS3FarVq75mvH5NlmYKCAiRJ0urM9954vV6tHyoqKsJut2OxWCguLtb2URSF7OxsJEnCYDBoH7e+c+bm5mpWr9PppLS0VHvv8vLy8Hq92n999VFeXl6tHIqiaH1dYWEhVqsVs9mspQH2Pc+cnBzcbjclJSWYTCYcDgdFRUVavy5JktZX+N43X//n9XpJS0vD7XZz48YN7Ha79u6oqlqt73e73VobdrvdWvnT09ORZZns7GytH/H1F75nnZaWhizL2jvl8Xi0fic5OVkro0+gKyoqtHt0uVwkJSXh8XgoKSnB4XBo/aDb7db2iY2N5ciRIxw/frzWkYY6EXSv18vq1atp27Ytt27d4sGDB5SWlmri3apVq2qOPTdv3iQkJASPx8ODBw8ICwsjNjaWOXPmMHbsWDweD0eOHCEuLo5z587h5+eniWhubm4NT3lB/XHt+jVe/XIVAaVp+BUmEhQxHbfDof1dUZSXcoh30epPaHXrDAGlKQQUJRFgTOcPn3xEbOzzhXI1P/owBbROzW63s2jRItasWfPU8+IisIy+EHWhL3wWd1PGbrfX75C7y+Vi9OjRDB8+XMs/ferUKe3i8+fPx1FFBO7du8e4cePweDx4vV4OHDjAmDFjWLhwIRUVFbjdbpYtW8YHH3zAhAkTuHDhgvBybwRkSWbMkkW8m3yjct68IIGWh7azb98+7sbGcuzYMc2Kgsp2cP78eU6ePNks8g4/jlKDgU6jhvNfCyJ4ddl8Xl36Ia8uX8DvZk5gxoL5eJ/VSVBVmRwRQUJCAgA3btwgPDyc3r17M2HChGd6liUlJS/lB5Ze8UVOFDQ+PofXpl4fDeIU57PUfFvV4fXHfRFV/b22fWorsBD0hiP2zh3e3bmJzmXp+Bcn41+cjF9BAv9vj0A6vdee3//+99rUhKqqTJo0iZ49ezJkyBB69+6t+Ro0N3xzeXabDbv1H5vDtyb/GS2A2Os3eOPTaCLXfIL66N2x2WzP5ZFrqmLpCxof4RSnH3w+Vk29PkSkOMFzsXHzZn4X1IVXxwznlRGDeWXEYP4yeih/8etAcmIS3bp1Iz09XXNi8ff3p7S0FK/XS0hIiKinp0Bye/jo6y94+8aPBHz1GTmPppaeF9/zF+gDIej6wRfsrKnXhxB0wXPhdruxmM01NusjhxB/f3/NsUdVVSZPnszmzZs5cuQIo0eP1vwo9IzZbObLL79kzZo1rF69+omjCuXl5axdu5Y1a9bw6aefcvDgwRdeg5+fl0vbZQvoXJLMGyf2ELNv7zNb+FURFrq+EIFl9IPPk72pIwRdUOcYjUY6d+6secGqqspXX33FO++8Q4cOHZg9e/ZTB0NpTBISEggODubEiRMcPny4mq/Hz7FarXz33XccO3aM6OhoAgICXvgeV372Ga0uHKsM1lOQQLvZU7C9QKfjW0ol0AfCQtcPYshdhwhB1wc+Qc/IyNCWngUFBWE0GnG73QwbNqxJZFmLj48nMjJSWwf8tERGRrJgwYIXuraxqJiQDavpkH2PgIIEAoqSeOfUQXbu2f3cVnp5ebkYctcRQtD1g6qq2lK1powQ9CaAbz161UpyuVwYjUaMRqMW2EAvlJWV4efnR2ZmJh6Ph+TkZAICArTgCOHh4Zw5c6axi/mLZGZm0qpVK4KDg/nggw80j/0n4Xa7CQwMJD4+/oWuvffgAf73yoW8efkEb5w7whvnv+NPJ/bQbeYUKsqMz3VOMYeuL4Sg6wcxh65Dmpugq6rKgQMH6N27NyEhIURERGhRjjZs2EDXrl0JDQ1l6tSpTxwObkjOnz9Pr169+PWvf027du24dOkSqqoyfvx4unfvTp8+fQgNDa0RGVCP+AI5VFRUMGjQIGbNmvWLx9y5cwc/P7+nDsdaK6rKj2fP8vX+b4k5dJCYQwcqtyOH+HrXTirKy5/rtCIfur4Qgq4fRD50HdLcBF1RFE6fPk1KSgqFhYUMHz6cjRs3oigKEyZM4OjRoxgMBgwGg27mRq1WK5mZmVpdlD8SH19ktoyMjBcTu0bi8OHDtGzZ8omCqKoq0dHRrFq1Spcdg5hD1xdC0PWDL2xvU68PIehNiBUrVmix7SdPnkxERAR79+7VrXemLz5zU8IryyiP1nvn5+drsaWjoqIYNWpUjRderfLiSJLE22+/zbVr1xq62E+F8HLXF01dPJoTPqe4po4Q9CaC1Wqla9euWmXt27ePhQsXMnHiREJCQnTZGC0WS5MLILNz/7d8e/gwqqry0UcfERoaSr9+/ejZsydlZWXV9r1z+zYR02doL09cXBz+/v66/Yjx5S0Q6IOqQbYEjYuqqmRlZTX5+hCC3gTweDyMHTuWRYsW1eiQJUli0KBBHD58uJFK93icTqdu5vafBrvVSuc502k5ZgROqxWHw8GDBw+4ffs2Nputxv6r9uzgT9PHk5mWDlSmJ9Vz+/Nl4hLoAzHkrh9UVaW0tLTJ14cQdJ2jKAorV65kzJgxWt73qni9XsaNG8fOnTsboXRPxpdIpKlw8ugxWh3dzVvHdvHdkSNPXB7msFp5c94s3o49x4JVH4Oi/45A5EPXF0LQ9YOqqlqGuKaMEHSd4LAXUl7682xcKnv37uCvf32Vy5cvc//+fXJzc/F4PBw8eJCbN29y8OBB2rdvr8ssc750o00Brywzcuki2sRfoUPWXYYv/QjXE0YXlkYvo9XV7+lclMybS6LISklpwNI+H74VEgJ9IOpCX9jt9sYuwgsjBF0neL1u0pO3UFF2T/vNaLjD1s2LWbp0KUuXLmHhwoWcOHECWZbZsWMHixcvZsmSJVy/fl2XnUNpaSklJSWNXYynIvb6df725SoCipMJKEzkr1+v5uZjnNuK8/Pp+vES2mfF0aUwidfPHGTd1r+j6Nz69eXhFugDWZbFFIhOUBSF+/fvN/n6EIKuIxSvi5T4L7CY0rCYUklJ/Bqvt+l+NXo8Htxud2MX4xdRZJnx0Ytpm3SdLoVJBBQk8l7qT0z4eBleSaq2r6qqHDjyHX/7bgddDakE5McTaM6m/bxZGHUen95utzf5Dqs5oceP8JcVVVWfK4Oh3hCCrjNkyU7SvVXE31mKJP1yZDI9YzKZmkQAmdSUFP40Zyqt716gza2ztLl1hrb3L/HKvBmkPnxYbV+bxYL/lAm8/dPpR/uepe3tc7y6ZyMxW7Y00h08HXl5eUg/+0ARNB7Cy10/qKpKenp6k68PIeg6w+OuIPHux8TfWYrbVfbLB+gYr9fbJJywzp49y/gZ05gUMYtJs/+xjZ8xnXPnz1fb1+FwMDMiggmzqu87Zspkjh471kh38HT4EuUI9IGoC33RFEYTfwkh6DpCkiykxH+BzZqFw1ZAavyXeNzPF+ZTD5SWlmIw6L8JqaqKqii1b7V0uo/dX+cdtJhD1xder1dMgegERVG4d+9ek68PIeg6QZYdpCVuwlzxj/KbK5JJT/oGSaq5BropIEmSGOLVEQ6HQ/cfHS8TYtmavrDZbE2+PoSg6wS3s6yamFeiYjGl4XAUNUqZXpSmGCmuOVNUVNQkpkBeFoSFrh9UVSUnJ0cIup5oyoIOT2pITbORqara5F+Q5oQQD4Hg8TSH90MIuqDeMJlMuk0c8zKSm5uLLMuNXQzBI4SFrh8URSEtLa3J14cQdEG94fF4hBOWjrDZbE2+w2pOiNErfdEcpgeFoAvqDZvNhtXatNfSNydKSkrEHLqOEOvQ9YOqqhQUFDT5D14h6PWMJElYLJZa4wQ7nU4sFkuzWP9YG3Xt5S7LMlartZo3qizLmM1mb
<p><strong>1. Introduction</strong></p> <p>The Campo del Cielo strewn field, located in the south of the Chaco province, Argentina, formed about 4000 a ago due to the impact of an octahedrite iron asteroid [1,2,3]. It extends about 14 km and ~3.5 km in impact and lateral direction, respectively. Recent numerical reconstructions of the strewn field yielded impactor parameters of min. 7500 &#8211; 8500 tons, 14.5-18.4 km/s entry velocity, and max. 16.5&#176; entry angle [4]. Beside four elliptical impact craters with diameters of 70&#160; - 115 m, penetration funnels with intact meteorites up to 30 tons in weight have been formed during the event [1,2].</p> <p>In this study, we analyse possible conditions of funnel formation, which may help to constrain the impactor parameters [4].</p> <p><strong>2. Method</strong></p> <p>The funnel formation is simulated using the iSALE-2D shock physics code [5], which has been applied to similar problems, previously [6]. Here, we explore the influence of impact velocity and target porosity on the funnel formation processes. Initial conditions are consistent with the atmospheric entry model, i.e. we model a 30 tons fragment at impact velocities between 600 m/s &#8211; 1600 m/s. The target is set up with a porosity of 40% to represent the local loess unit at the side of impact. Further, the porosity is varied between 30-50% at a constant impact velocity of 800 m/s.</p> <p>To test the effect of impact angle on the funnel formation process, we used the 3D version of iSALE to simulate impacts at 600 m/s at varying angles from 15&#176; to 90&#176;. &#160;</p> <p><strong>3. Results</strong></p> <p>Preliminary analysis of impact experiments [7] have shown that in the Campo del Cielo case (iron projectile and loess as a target) funnel formation and projectile survivability is possible at impact velocities below 1 km/s. Even though the iSALE models confirm this estimate, the 1 km/s is probably the upper limit of impact velocity allowing survivability of high strength iron meteoroids impacting into loess (Figure 1). At this velocity, the fragment is already deformed to a significant extent (Figure 2). A further increase of impact velocity leads to an increase in projectile deformation (pancaking) up to the projectile breakup. At velocities above 1 km/s, funnels are gradually transformed into impact craters due to their increase in diameter. At 1.6 km/s, the cavity widens about 5 times the projectile size and the depth/diameter ratio approaches 1.</p> <p><img src="" alt="" /></p> <p><strong>Figure 1:</strong> Snapshot of the funnel formation after 160 ms into a loess target. On the left is shown the density, on the right is shown the temperature.</p> <p><img src="" alt="" /></p> <p><strong>Figure 2:</strong> Projectile Fate at different impact velocities.</p> <p>3D models reveal an interesting effect: at shallow angles even a low-velocity projectile is reflected from the surface and an elliptical crater, not a funnel, is formed (Figure 3). An impact angle should be at least 25&#176; to avoid the reflection.</p> <p><img src="" alt="" /></p> <p><strong>Figure 3:</strong> The projectile (dark red) bounces off from the target surface (yellow) for an impact at 15&#176; at 600 m/s. The colour along the floor indicates the density, with 1000 kg/m&#179; as dark blue to 2000 kg/m&#179; as red.</p> <p>&#160;</p> <p><strong>4. Conclusion and Discussion</strong></p> <p>Our findings suggest that the funnels of the Campo del Cielo strewn field are in line with results from recent atmospheric entry simulations [4]. Even though the predicted entry angle of 16.5&#176; is below the threshold for funnel formation (25&#176;), atmospheric deceleration of fragments from cosmic velocities down to 0.6 &#8211; 1 km/s steepens their trajectories. Our findings also contradict field estimates of the Campo del Cielo impact scenarios in which impact velocities are in the range of 3-5 km/s at an angle of 9-10&#176; to horizon [1].</p> <p><strong>Acknowledgements</strong></p> <p>We gratefully acknowledge the developers of iSALE (www.isale-code.de). The authors acknowledge the funding from the ESA project P3-NEO-VIII and P3-NEO-XXVIII. The authors are grateful to Shawn Wright for the update of Campo del Cielo field observations.</p> <p><strong>References</strong></p> <p>[1] Cassidy W. A. and Renard M. L. 1996. <em>M&PS</em> 31:433&#8211;448.</p> <p>[2] Cassidy W. A. et al. 1965. <em>Science</em> 149: 1055&#8211;1064.</p> <p>[3] Liberman R. G. et al. 2002. <em>M&PS</em> 37:295&#8211;300.</p> <p>[4] Schmalen A. et al. 2022. <em>M&PS</em>.</p> <p>[5] W&#252;nnemann K. et al. 2006. <em>Icarus</em> 180: 514&#8211;527.</p> <p>[6] Luther R. et al. 2017. <em>M&PS</em> 52: 979-999.</p> <p>[7] Kadono T. 1999. <em>PSS</em> 47: 305&#8211;318.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.