In line with efforts to create a circular economy of plastics, recent EU legislation is strengthening plastic bottle recycling by ambitious separate collection targets and mandatory recycled content obligations. Furthermore, explicit design requirements on the caps of bottles and composite beverage packaging have been introduced. These caps are typically made of polyethylene or polypropylene and often contain additives such as slip agents and anti-statics. Commercially available bottle cap recyclates (BCRs) as well as specifically formulated model compounds were analyzed in terms of composition by means of infrared spectroscopy, differential scanning calorimetry, and high-performance liquid chromatography. Their composition was found to be heterogeneous due to polyolefin cross-contamination, directly reflecting the diversity of cap materials present in the market. Slip agent legacy additives originating from the initial use phase were found and quantified in both commercial and model cap recyclates. This highlights the opportunity for redesigning plastic bottle caps not only in response to regulatory requirements, but to pursue a more comprehensive strategy of product design for circularity. By including considerations of polymer resin and additive choice in cap manufacturing, more homogeneous waste streams could be derived from plastic bottle cap recycling, enabling recycling into more demanding and valuable applications.
Recycling will be of increasing importance in the future, especially for plastic packaging waste mainly consisting of polyolefins. One major problem of recyclates comprises impurities which can have a significant negative impact on future product properties. Polyamide 6 can be found widely as contaminant in recycled polyolefins, leading to a need of quantification methods thereof. In this paper, a method development for the quantitative analysis of polyamide 6 is presented based on analysing ε-caprolactam and related cyclic oligomers as marker compounds in model recyclates of high- and low-density polyethylene and polypropylene compounded with low amounts of polyamide 6. For the method development and tentative identification of the different cyclic compounds, a HPLC-QTOF-MS was used and it was possible to detect six different compounds, ε-caprolactam and the corresponding cyclic di- to hexamer. The quantification was performed with a HPLC-QQQ-MS, equipped with a HILIC column, after sample preparation via microwave-assisted extraction. It could be shown that a good linearity from 0.2 up to 5 wt% polyamide 6 in the different polyolefins can be achieved. The cyclic trimer and tetramer show a low limit of quantification and are therefore well-suited for the quantification, whereas the other cyclic compounds can be then used as qualifiers to avoid false positives. To guarantee the applicability of the method, six real recyclate materials were analysed, whereby in three of them low amounts of polyamide 6 could be detected.
Recycling is a current hot topic with a focus especially on plastics. The quality of such plastic recyclates is of utmost importance for further processing because impurities lead to a reduction thereof. Contaminations originating from other polymers are highly problematic due to their immiscibility with the recyclate, leading to possible product failures. Therefore, methods for the determination of polymer impurities in recyclates should be investigated. In this paper, an approach for the identification of three different polyamide grades (polyamide 6, 6.6, and 12) is presented, applicable for the analysis of polyolefin-recyclates. An HPLC equipped with a drift-tube ion-mobility QTOF-MS was used for the identification and differentiation of compounds originating from the polyamides, which were then used as markers. These marker compounds are specific for each type and can be identified by their corresponding value of the collision cross section (CCS). After a simple sample preparation, all three types of polyamides were identified within one measurement. In particular, the problematic differentiation of polyamide 6 and 6.6 was easily made possible.
In a circular economy, polymeric materials are used in multiple loops to manufacture products. Therefore, closed-loops are also envisaged for the mechanical recycling of plastics, in which plastic is used for products that are in turn collected and reprocessed again and again to make further products. However, this reprocessing involves degradation processes within the plastics, which become apparent through changes in the property profile of the material. In the present paper, the influence of multiple recycling loops on the material properties of four different polyolefins was analyzed. Two different closed-loop cycles with industrially sized processing machines were defined, and each polyolefin was processed and reprocessed within the predefined cycles. For the investigation of the effect of the respective loops, samples were taken after each loop. The samples were characterized by high-pressure liquid chromatography coupled to a quadru-pole time-of-flight MS, high-temperature gel permeation chromatography, melt flow rate measurements, infrared spectroscopy, differential thermal analysis, and tensile tests. With increasing number of processing loops, the tested polyolefins showed continuous material degradation, which resulted in significant changes in the property profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.