This work studies a mathematical model for the dynamics of Chagas disease, a parasitic disease that affects humans and domestic mammals throughout rural areas in Central and South America. It presents a modified version of the model found in Spagnuolo et al. [A model for Chagas disease with controlled spraying, J. Biol. Dyn. 5 (2011), pp. 299-317] with a delayed logistic growth term, which captures an overshoot, beyond the vector carrying capacity, in the total vector population when the blood meal supply is large. It studies the steady states of the system in the case of constant coefficients without spraying, and the analysis shows that for given-averaged parameters, the endemic equilibrium is stable and attracting. The numerical simulations of the model dynamics with time-dependent coefficients are shown when interruptions in the annual insecticide spraying cycles are taken into account. Simulations show that when there are spraying schedule interruptions, spraying may become ineffective when the blood meal supply is large.
Scattering interactions of swarms in potentials that are generated by an attraction-repulsion model are studied. In free space, swarms in this model form a well-defined steady state describing the translation of a stable formation of the particles whose shape depends on the interaction potential. Thus, the collision between a swarm and a boundary or between two swarms can be treated as (quasi)-particle scattering. Such scattering experiments result in internal excitations of the swarm or in bound states, respectively. In addition, varying a parameter linked to the relative importance of damping and potential forces drives transitions between elastic and inelastic scattering of the particles. By tracking the swarm's center of mass, a refraction rule is derived via simulations relating the incoming and outgoing directions of a swarm hitting the wall. Iterating the map derived from the refraction law allows us to predict and understand the dynamics and bifurcations of swarms in square boxes and in channels.
Swarms of animals, fish, birds, locusts etc. are a common occurrence but their coherence and method of organization poses a major question for mathematics and biology. The Vicsek and the Attraction-Repulsion are two models that have been proposed to explain the emergence of collective motion. A major issue for the Vicsek Model is that its particles are not attracted to each other, leaving the swarm with alignment in velocity but without spatial coherence. Restricting the particles to a bounded domain generates global spatial coherence of swarms while maintaining velocity alignment. While individual particles are specularly reflected at the boundary, the swarm as a whole is not. As a result, new dynamical swarming solutions are found.The Attraction-Repulsion Model set with a long-range attraction and short-range repulsion interaction potential typically stabilizes to a well-studied flock steady state solution.The particles for a flock remain spatially coherent but have no spatial bound and explore all space. A bounded domain with specularly reflecting walls traps the particles within a specific region. A fundamental refraction law for a swarm impacting on a planar boundary is derived. The swarm reflection varies from specular for a swarm dominated by kinetic energy to inelastic for a swarm dominated by potential energy. Inelastic collisions lead to alignment with the wall and to damped pulsating oscillations of the swarm. The fundamental refraction law provides a one-dimensional iterative map that allows for a prediction and analysis of the trajectory of the center of mass of a flock in a channel and a square domain.The extension of the wall collisions to a scattering experiment is conducted by setting two identical flocks to collide. The two particle dynamics is studied analytically and shows
A kinetic model for a specific agent based simulation to generate the sales curves of successive generations of high-end computer chips is developed. The resulting continuum market model consists of transport equations in two variables, representing the availability of money and the desire to buy a new chip. In lieu of typical collision terms in the kinetic equations that discontinuously change the attributes of an agent, discontinuous changes are initiated via boundary conditions between sets of partial differential equations. A scaling analysis of the transport equations determines the different time scales that constitute the market forces, characterizing different sales scenarios. It is argued that the resulting model can be adjusted to generic markets of multi-generational technology products where the innovation time scale is an important driver of the market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.