As the performance and complexity of machine learning models have grown significantly over the last years, there has been an increasing need to develop methodologies to describe their behaviour. Such a need has mainly arisen due to the widespread use of black-box models, i.e., high-performing models whose internal logic is challenging to describe and understand. Therefore, the machine learning and AI field is facing a new challenge: making models more explainable through appropriate techniques. The final goal of an explainability method is to faithfully describe the behaviour of a (black-box) model to users who can get a better understanding of its logic, thus increasing the trust and acceptance of the system. Unfortunately, state-of-the-art explainability approaches may not be enough to guarantee the full understandability of explanations from a human perspective. For this reason, human-in-the-loop methods have been widely employed to enhance and/or evaluate explanations of machine learning models. These approaches focus on collecting human knowledge that AI systems can then employ or involving humans to achieve their objectives (e.g., evaluating or improving the system). This article aims to present a literature overview on collecting and employing human knowledge to improve and evaluate the understandability of machine learning models through human-in-the-loop approaches. Furthermore, a discussion on the challenges, state-of-the-art, and future trends in explainability is also provided.
The spread of AI and black-box machine learning models made it necessary to explain their behavior. Consequently, the research field of Explainable AI was born. The main objective of an Explainable AI system is to be understood by a human as the final beneficiary of the model. In our research, we frame the explainability problem from the crowds point of view and engage both users and AI researchers through a gamified crowdsourcing framework. We research whether it's possible to improve the crowds understanding of black-box models and the quality of the crowdsourced content by engaging users in a set of gamified activities through a gamified crowdsourcing framework named EXP-Crowd. While users engage in such activities, AI researchers organize and share AI- and explainability-related knowledge to educate users. We present the preliminary design of a game with a purpose (G.W.A.P.) to collect features describing real-world entities which can be used for explainability purposes. Future works will concretise and improve the current design of the framework to cover specific explainability-related needs.
In recent years, new methods to engage citizens in deliberative processes of governments and institutions have been studied. Such methodologies have become a necessity to assure the efficacy and longevity of policies. Several tools and solutions have been proposed while trying to achieve such a goal. The dual problem to citizen engagement is how to provide policy-makers with useful and actionable insights stemming from those processes. In this paper, we propose a research featuring a method and implementation of a crowdsourcing and co-creation technique that can provide value to both citizens and policy-makers engaged in the policy-making process. Thanks to our methodology, policy-makers can design challenges for citizens to partake, cooperate and provide their input. We also propose a web-based tool that allow citizens to participate and produce content to support the policy-making processes through a gamified interface that focuses on emotional and vision-oriented content.
Traditional approaches to data-informed policymaking are often tailored to specific contexts and lack strong citizen involvement and collaboration, which are required to design sustainable policies. We argue the importance of empathy-based methods in the policymaking domain given the successes in diverse settings, such as healthcare and education. In this paper, we introduce COCTEAU (Co-Creating The European Union), a novel framework built on the combination of empathy and gamification to create a tool aimed at strengthening interactions between citizens and policy-makers. We describe our design process and our concrete implementation, which has already undergone preliminary assessments with different stakeholders. Moreover, we briefly report pilot results from the assessment. Finally, we describe the structure and goals of our demonstration regarding the newfound formats and organizational aspects of academic conferences. CCS CONCEPTS• Human-centered computing → Collaborative and social computing; Empirical studies in HCI ; • Information systems → Web applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.