The series "Advances in Intelligent Systems and Computing" contains publications on theory, applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually all disciplines such as engineering, natural sciences, computer and information science, ICT, economics, business, e-commerce, environment, healthcare, life science are covered. The list of topics spans all the areas of modern intelligent systems and computing such as: computational intelligence, soft computing including neural networks, fuzzy systems, evolutionary computing and the fusion of these paradigms, social intelligence, ambient intelligence, computational neuroscience, artificial life, virtual worlds and society, cognitive science and systems, Perception and Vision, DNA and immune based systems, self-organizing and adaptive systems, e-Learning and teaching, human-centered and human-centric computing, recommender systems, intelligent control, robotics and mechatronics including human-machine teaming, knowledge-based paradigms, learning paradigms, machine ethics, intelligent data analysis, knowledge management, intelligent agents, intelligent decision making and support, intelligent network security, trust management, interactive entertainment, Web intelligence and multimedia.The publications within "Advances in Intelligent Systems and Computing" are primarily proceedings of important conferences, symposia and congresses. They cover significant recent developments in the field, both of a foundational and applicable character. An important characteristic feature of the series is the short publication time and world-wide distribution. This permits a rapid and broad dissemination of research results.
The World-Wide-Web is a complex system naturally represented by a directed network of documents (nodes) connected through hyperlinks (edges). In this work, we focus on one of the most relevant topological properties that characterize the network, i.e. being scale-free. A directed network is scale-free if its in-degree and out-degree distributions have an approximate and asymptotic power-law behavior. If we consider the Web as a whole, it presents empirical evidence of such property. On the other hand, when we restrict the study of the degree distributions to specific sub-categories of websites, there is no longer strong evidence for it. For this reason, many works questioned the almost universal ubiquity of the scale-free property. Moreover, existing statistical methods to test whether an empirical degree distribution follows a power law suffer when dealing with large sample size and/or noisy data. In this paper, we propose an extension of a state-of-the-art method that overcomes such problems by applying a subsampling procedure on the graphs performing Random Walks (RW). We show on synthetic experiments that even small variations of true power-law distributed data causes the state-of-the-art method to reject the hypothesis, while the proposed method is more sound and stable under such variations. Lastly, we perform a study on 3 websites showing that indeed, depending on the sub-categories of website we consider, some accept and some refuse the hypothesis of being power-law. We argue that our method could be used to further explore sub-categories of websites in order to better characterize their topological properties deriving from different generative principles: central or peripheral.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.