Electrokinetic forces are emerging as a powerful means to drive microfluidic systems with flow channel cross-sectional dimensions in the tens of micrometers and flow rates in the nanoliter per second range. These systems provide many advantages such as improved analysis speed, improved reproducibility, greatly reduced reagent consumption, and the ability to perform multiple operations in an integrated fashion. Planar microfabrication methods are used to make these analysis chips in materials such as glass or polymers. Many applications of this technology have been demonstrated, such as DNA separations, enzyme assays, immunoassays, and PCR amplification integrated with microfluidic assays. Further development of this technology is expected to yield higher levels of functionality of sample throughput on a single microfluidic analysis chip.
Couette and parallel plate viscometers are two commonly used flow geometries to characterize shear viscosity of concentrated suspensions. In Couette flow, it is well documented that prolonged shearing causes a decrease in the apparent viscosity of concentrated suspensions due to shear-induced particle migration from the annulus region to the stagnant region under the bob. In this study, the technique of nuclear magnetic resonance imaging (NMRI) was used to measure the evolution of suspension concentration profiles in Couette and parallel-plate flow devices upon shearing. Neutrally buoyant suspensions of nearly monodisperse, non-Brownian spherical particles at a volume fraction of 0.5 in a Newtonian fluid were used. The same flow cells and suspensions were also used in a rheometer to measure the changes in shear stress under identical experimental conditions such that a direct comparison can be made between the stress and concentration data. For Couette flow, the NMRI data correlated very well with the stress measurements and directly confirmed the Leighton–Acrivos [J. Fluid. Mech. 181, 415 (1987)] shear-induced migration theory. In torsional flow between parallel plates, no detectable change was found in particle concentration in the radial direction, but some decrease in the apparent viscosity was observed. These results provide some important clues for developing and evaluating more general descriptions of particle migration for nonrectilinear shear flows.
BackgroundManagement of patients with chronic conditions relies on accurate measurement. It is unknown how transition to the ICD-10 coding system affected reporting of chronic condition rates over time. We measured chronic condition rates 2 years before and 1 year after the transition to ICD-10 to examine changes in prevalence rates and potential measurement issues in the Veterans Affairs (VA) health care system.MethodsWe developed definitions for 34 chronic conditions using ICD-9 and ICD-10 codes and compared the prevalence rates of these conditions from FY2014 to 2016 in a 20% random sample (1.0 million) of all VA patients. In each year we estimated the total number of patients diagnosed with the conditions. We regressed each condition on an indicator of ICD-10 (versus ICD-9) measurement to obtain the odds ratio associated with ICD-10.ResultsCondition prevalence estimates were similar for most conditions before and after ICD-10 transition. We found significant changes in a few exceptions. Alzheimer’s disease and spinal cord injury had more than twice the odds of being measured with ICD-10 compared to ICD-9. HIV/AIDS had one-third the odds, and arthritis had half the odds of being measured with ICD-10. Alcohol dependence and tobacco/nicotine dependence had half the odds of being measured in ICD-10.ConclusionMany chronic condition rates were consistent from FY14–16, and there did not appear to be widespread undercoding of conditions after ICD-10 transition. It is unknown whether increased sensitivity or undercoding led to decreases in mental health conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.