A class of non-convex optimization problems with DC objective function is studied, where DC stands for being representable as the difference f = g − h of two convex functions g and h. In particular, we deal with the special case where one of the two convex functions g or h is polyhedral. In case g is polyhedral, we show that a solution of the DC program can be obtained from a solution of an associated polyhedral projection problem. In case h is polyhedral, we prove that a solution of the DC program can be obtained by solving a polyhedral projection problem and finitely many convex programs. Since polyhedral projection is equivalent to multiple objective linear programming (MOLP), a MOLP solver (in the second case together with a convex programming solver) can be used to solve instances of DC programs with polyhedral component. Numerical examples are provided, among them an application to locational analysis.
The aim of this work is to locate a semi-obnoxious facility, i.e. to minimize the distances to a given set of customers in order to save transportation costs on the one hand and to avoid undesirable interactions with other facilities within the region by maximizing the distances to the corresponding facilities on the other hand. Hence, the goal is to satisfy economic and environmental issues simultaneously. Due to the contradicting character of these goals, we obtain a non-convex objective function. We assume that distances can be measured by rectilinear distances and exploit the structure of this norm to obtain a very efficient dual pair of algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.