Mature secretory granules of epithelioid cells--the so-called renin granules--exhibit certain properties, which in this particular combination are expressed only by lysosomes: Renin granules have autophagic capabilities; they react to the application of lipidosis-inducing, lysosomotropic substances by the gradual accumulation of polar lipids; all secretory granules of epithelioid cells contain acid phosphatase until maturity; and exogenous tracers reach renin granules without labeling the Golgi complex. Several functional implications can therefore be considered. Hydrolytic enzymes, constitutive elements of the granule matrix, might either cleave inactive prorenin to yield active renin within the granules or, by unspecific hydrolysis of renin, participate in the regulation of the overall quantity of secretory product. Autophagic phenomena, the involvement of renin granules in the traffic of exogenous tracers, and the build-up of polar lipids following experimental interference with lipid catabolism indicate a large turnover of membrane material in renin granules. They also suggest that cytoplasmic and extracellular fluid gains access to the granule content and may thus be involved there in the regulation of biochemical reactions by changing the intragranular milieu or via signal molecules. In addition to the lysosome-like properties of epithelioid cell secretory granules, the secretory product, renin, as a carboxyl protease, is structurally related to other acidic proteases. In the case of cathepsin D, even functional similarities exist.
Histological, ultrastructural, immunohistochemical, intravital microscopic and electrophysiological techniques have been applied to study experimental hydronephrosis in rats in order to assess its value as a preparation for the investigation of renal microcirculation and of the electrophysiological properties of the renin-containing juxtaglomerular (JG) cells of the afferent glomerular arteriole. As hydronephrosis develops, the kidney parenchyma becomes progressively thinner owing to tubular atrophy. Twelve weeks after ureteral ligature, this process results in a transparent tissue sheet of about 150-200 microns in thickness. In this preparation, the renal arterial tree as well as the glomeruli can be easily visualized for intravital microscopic studies, e.g. the determination of kidney vessel diameters, or the identification of JG cells for penetration with an intracellular microelectrode. In contrast to the tubular atrophy, the vascular system is well preserved, and the JG cells and the sympathetic axon terminals are ultrastructurally intact. This is also true for the glomeruli, except for a certain confluence of the podocyte foot processes and a thickening of the basal laminae. Renin immunostaining and kidney renin content in the hydronephrotic organ correspond to those in control kidneys. In addition, there are no differences in the plasma renin levels of hydronephrotic and control rats. Intravital microscopic observations reveal that the renal vascular tree reacts in a typical, concentration dependent manner to the vasoconstrictor agent angiotensin II, mainly at the level of the resistance vessels. Electrophysiological recordings from juxtaglomerular granulated cells show a high membrane potential (-60 mV), and spontaneous depolarizing junction potentials, owing to random transmitter release from the nerve terminals. Angiotensin II, an inhibitor of renin release, depolarizes JG cells reversibly. Hence, we may infer that the hydronephrotic rat kidney is a suitable model for in vivo studies of the renal microcirculation as well as for in vitro investigations of the electrophysiological properties of the media cells of the afferent glomerular arteriole.
No abstract
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.