Data centers are currently constructed with fixed blocks (blades); the hard boundaries of this approach lead to suboptimal utilization of resources and increased energy requirements. The dReDBox (disaggregated Recursive Datacenter in a Box) project addresses the problem of fixed resource proportionality in next-generation, low-power data centers by proposing a paradigm shift toward finer resource allocation granularity, where the unit is the function block rather than the mainboard tray. This introduces various challenges at the system design level, requiring elastic hardware architectures, efficient software support and management, and programmable interconnect. Memory and hardware accelerators can be dynamically assigned to processing units to boost application performance, while high-speed, low-latency electrical and optical interconnect is a prerequisite for realizing the concept of data center disaggregation. This chapter presents the dReDBox hardware architecture and discusses design aspects of the software infrastructure for resource allocation and management. Furthermore, initial simulation and evaluation results for accessing remote, disaggregated memory are presented, employing benchmarks from the Splash-3 and the CloudSuite benchmark suites.
In the recent years, we have witnessed an explosion of the usages of Virtual Machines (VMs) which are currently found in desktops, smartphones, and cloud deployments. These recent developments create new research opportunities in the VM domain extending from performance to energy efficiency, and scalability studies. Research into these directions necessitates research frameworks for VMs that provide full coverage of the execution domains and hardware platforms. Unfortunately, the state of the art on Research VMs does not live up to such expectations and lacks behind industrialstrength software, making it hard for the research community to provide valuable insights.This paper presents our work in attempting to tackle those shortcomings by introducing Beehive, our vision towards a modular and seamlessly extensible ecosystem for research on virtual machines. Beehive unifies a number of existing state-of-the-art tools and components with novel ones providing a complete platform for hardware/software co-design of Virtual Machines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.