Lamellae of 1.5 µm thickness, prepared from well-crystallised monazite–(Ce) and zircon samples using the focused-ion-beam technique, were subjected to triple irradiation with 1 MeV Au+ ions (15.6% of the respective total fluence), 4 MeV Au2+ ions (21.9%) and 10 MeV Au3+ ions (62.5%). Total irradiation fluences were varied in the range 4.5 × 1012 – 1.2 × 1014 ions/cm2. The highest fluence resulted in amorphisation of both minerals; all other irradiations (i.e. up to 4.5 × 1013 ions/cm2) resulted in moderate to severe damage. Lamellae were subjected to Raman and laser-induced photoluminescence analysis, in order to provide a means of quantifying irradiation effects using these two micro-spectroscopy techniques. Based on extensive Monte Carlo calculations and subsequent defect-density estimates, irradiation-induced spectroscopic changes are compared with those of naturally self-irradiated samples. The finding that ion irradiation of monazite–(Ce) may cause severe damage or even amorphisation, is in apparent contrast to the general observation that naturally self-irradiated monazite–(Ce) does not become metamict (i.e. irradiation-amorphised), in spite of high self-irradiation doses. This is predominantly assigned to the continuous low-temperature damage annealing undergone by this mineral; other possible causes are discussed. According to cautious estimates, monazite–(Ce) samples of Mesoproterozoic to Cretaceous ages have stored only about 1% of the total damage experienced. In contrast, damage in ion-irradiated and naturally self-irradiated zircon is on the same order; reasons for the observed slight differences are discussed. We may assess that in zircon, alpha decays create significantly less than 103 Frenkel-type defect pairs per event, which is much lower than previous estimates. Amorphisation occurs at defect densities of about 0.10 dpa (displacements per lattice atom).Electronic supplementary materialThe online version of this article (10.1007/s00269-018-0975-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.