Surface ocean iron (Fe) fertilization can affect the marine primary productivity (MPP), thereby impacting on CO2 exchanges at the atmosphere‐ocean interface and eventually on climate. Mineral (aeolian or desert) dust is known to be a major atmospheric source for the surface ocean biogeochemical iron cycle, but the significance of volcanic ash is poorly constrained. We present the results of geochemical experiments aimed at determining the rapid release of Fe upon contact of pristine volcanic ash with seawater, mimicking their dry deposition into the surface ocean. Our data show that volcanic ash from both subduction zone and hot spot volcanoes (n = 44 samples) rapidly mobilized significant amounts of soluble Fe into seawater (35–340 nmol/g ash), with a suggested global mean of 200 ± 50 nmol Fe/g ash. These values are comparable to the range for desert dust in experiments at seawater pH (10–125 nmol Fe/g dust) presented in the literature (Guieu et al., 1996; Spokes et al., 1996). Combining our new Fe release data with the calculated ash flux from a selected major eruption into the ocean as a case study demonstrates that single volcanic eruptions have the potential to significantly increase the surface ocean Fe concentration within an ash fallout area. We also constrain the long‐term (millennial‐scale) airborne volcanic ash and mineral dust Fe flux into the Pacific Ocean by merging the Fe release data with geological flux estimates. These show that the input of volcanic ash into the Pacific Ocean (128–221 × 1015 g/ka) is within the same order of magnitude as the mineral dust input (39–519 × 1015 g/ka) (Mahowald et al., 2005). From the similarity in both Fe release and particle flux follows that the flux of soluble Fe related to the dry deposition of volcanic ash (3–75 × 109 mol/ka) is comparable to that of mineral dust (1–65 × 109 mol/ka). Our study therefore suggests that airborne volcanic ash is an important but hitherto underestimated atmospheric source for the Pacific surface ocean biogeochemical iron cycle.
Kizimen volcano in Kamchatka is well known as a source of highly heterogeneous poorly mingled magmas ranging from dacites to basaltic andesites. In 2010-2013, the volcano produced its first historical magmatic eruption with the deposition of 0.27 km 3 of block and ash pyroclastic flows accompanied by slow extrusion of a 200-m-thick, highly viscous (10 10 -10 11 Pa s) block lava flow with a volume of 0.3 km 3 . The total volume of erupted magma comprised approximately 0.4 km 3 DRE. We provide description of the eruption chronology, as well as the lithology and petrology of eruptive products. The erupted material is represented by banded dacite and high-silica andesite. The dacitic magma was formed during a long dormancy after the previous magmatic eruption several hundred years ago with mineral compositions indicating average pre-eruptive temperatures of~810°C, fO 2 of 0.9-1.6 log units above the nickel-nickel oxide (NNO) buffer and shallow crustal storage conditions at~123 MPa. The silica-rich andesite represents a hybrid magma, which shows signs of recent thermal and compositional disequilibrium. We suggest that the hybrid magma started to form in 1963 when a swarm of deep earthquakes indicated an input of mafic magma from depth into the 6-11-km-deep silicic magma chamber. It took the following 46 years until the magma filling the chamber reached an eruptible state. Poor mingling of the two melts is attributed to its unusually high viscosity that could be associated with the pre-eruptive long-term leakage of volatiles from the chamber through a regional tectonic fault. Our investigations have shown that shallow magma chambers of dormant volcanoes demonstrating strong persistent fumarolic activity can contain highly viscous, degassed magma of evolved composition. Reactivation of such magma chambers by injection of basic magma takes a long time (several decades). Thus, eruption forecasts at such volcanoes should include a possibility of long time lag between a swarm of deep earthquakes (indicating the recharge of basic magma from depth) and the following swarm of shallow earthquakes (indicating final ascent of the hybrid magma towards the surface). Due to the high viscosity of the magma, the shallow swarm can last for more than a year. The forthcoming eruption can be of moderate to low explosivity and include extrusion of viscous lava flows and domes composed of poorly mingled magmas of contrasting compositions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.