Abstract. We prove quadratic estimates for complex perturbations of Diractype operators, and thereby show that such operators have a bounded functional calculus. As an application we show that spectral projections of the Hodge-Dirac operator on compact manifolds depend analytically on L ∞ changes in the metric. We also recover a unified proof of many results in the Calderón program, including the Kato square root problem and the boundedness of the Cauchy operator on Lipschitz curves and surfaces.
We continue the development, by reduction to a first order system for the conormal gradient, of L 2 a priori estimates and solvability for boundary value problems of Dirichlet, regularity, Neumann type for divergence form second order, complex, elliptic systems. We work here on the unit ball and more generally its bi-Lipschitz images, assuming a Carleson condition as introduced by Dahlberg which measures the discrepancy of the coefficients to their boundary trace near the boundary. We sharpen our estimates by proving a general result concerning a priori almost everywhere non-tangential convergence at the boundary. Also, compactness of the boundary yields more solvability results using Fredholm theory. Comparison between classes of solutions and uniqueness issues are discussed. As a consequence, we are able to solve a long standing regularity problem for real equations, which may not be true on the upper half-space, justifying a posteriori a separate work on bounded domains.
We consider second order elliptic divergence form systems with complex measurable coefficients A that are independent of the transversal coordinate, and prove that the set of A for which the boundary value problem with L 2 Dirichlet or Neumann data is well posed, is an open set. Furthermore we prove that these boundary value problems are well posed when A is either Hermitean, block or constant. Our methods apply to more general systems of partial differential equations and as an example we prove perturbation results for boundary value problems for differential forms.
We prove that Neumann, Dirichlet and regularity problems for divergence form elliptic equations in the half-space are well posed in L 2 for small complex L ∞ perturbations of a coefficient matrix which is either real symmetric, of block form or constant. All matrices are assumed to be independent of the transversal coordinate. We solve the Neumann, Dirichlet and regularity problems through a new boundary operator method which makes use of operators in the functional calculus of an underlaying first order Dirac type operator. We establish quadratic estimates for this Dirac operator, which implies that the associated Hardy projection operators are bounded and depend continuously on the coefficient matrix. We also prove that certain transmission problems for k-forms are well posed for small perturbations of block matrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.