Design, manufacturing, calibration, and basic characterization of a microelectromechanical systems (MEMS) wall hotwire sensor on a flexible polyimide substrate are presented. A configuration exhibiting bondpads on the top side of the foil, as well as an improved setup featuring a through-foil metallization and bottom side bondpads were established. Both sensor designs make use of a highly sensitive nickel thin-film resistor spanning a reactive ion etched cavity in a polyimide substrate. The polyimide base material enables the sensor to be adapted to curved aerodynamic surfaces, e.g., airfoils and turbine blades. A mismatch of curvature of aerodynamic surface and silicon sensor surface, as observed with previously presented MEMS hot-wire anemometers is avoided. The combination of polyimide's low thermal conductivity and a cavity featuring FEM-optimized dimensions accounts for a very low-power consumption (<25 mW). Fluctuations in wall shear stress up to 85 kHz can be resolved in constant-temperature mode. An average sensitivity of 0.166 V/(N/m 2 ) is achieved in a wall shear stress range from 0 to 0.72 N/m 2 . The specifically designed through-foil metallization process allows for electrical contacts to be positioned on the backside of the substrate, thus effectively minimizing aerodynamic disturbances.Index Terms-Microelectromechanical systems (MEMS), polyimide, via, wall hot-wire.
Design, simulation, manufacturing, calibration, and basic characterization of a MEMS wall hot-wire anemometer is presented. A highly sensitive nickel thin film resistor spanning a reactive ion etched cavity in a polyimide foil is employed. This sensor is the first in literature to feature both a thermally insulating cavity and a flexible base material. The polyimide base material allows adopting of the sensor to aerodynamic surfaces, e.g. airfoils and turbine blades. A mismatch of curvature of aerodynamic surface and silicon sensor surface, as observed with previously presented MEMS hot-wire anemometers, is avoided. The combination of polyimide's low thermal conductivity and a cavity featuring FEM-optimized dimensions accounts for a very low power consumption (<30 mW). Fluctuations in wall shear stress up to 80 kHz can be resolved in constant-temperature mode. An average sensitivity of 0.44 V / (N/m²) is achieved in a wall shear stress range from 0 to 0.25 N/m².
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.