Müller glial cells span the entire thickness of the tissue, and ensheath all retinal neurons, in vertebrate retinae of all species. This morphological relationship is reflected by a multitude of functional interactions between neurons and Müller cells, including a 'metabolic symbiosis' and the processing of visual information. Müller cells are also responsible for the maintenance of the homeostasis of the retinal extracellular milieu (ions, water, neurotransmitter molecules, and pH). In vascularized retinae, Müller cells may also be involved in the control of angiogenesis, and the regulation of retinal blood flow. Virtually every disease of the retina is associated with a reactive Müller cell gliosis which, on the one hand, supports the survival of retinal neurons but, on the other hand, may accelerate the progress of neuronal degeneration: Müller cells protect neurons via a release of neurotrophic factors, the uptake and degradation of the excitotoxin, glutamate, and the secretion of the antioxidant, glutathione. However, gliotic Müller cells display a dysregulation of various neuron-supportive functions. This contributes to a disturbance of retinal glutamate metabolism and ion homeostasis, and causes the development of retinal edema and neuronal cell death. Moreover, there are diseases evoking a primary Müller cell insufficiency, such as hepatic retinopathy and certain forms of glaucoma. Any impairment of supportive functions of Müller cells, primary or secondary, must cause and/or aggravate a dysfunction and loss of neurons, by increasing the susceptibility of neurons to stressful stimuli in the diseased retina. On the contrary, Müller cells may be used in the future for novel therapeutic strategies to protect neurons against apoptosis (somatic gene therapy), or to differentiate retinal neurons from Müller/stem cells. Meanwhile, a proper understanding of the gliotic responses of Müller cells in the diseased retina, and of their protective vs. detrimental effects, is essential for the development of efficient therapeutic strategies that use and stimulate the neuron-supportive/protective-and prevent the destructive-mechanisms of gliosis.
Müller cells, the major type of glial cells in the retina, are responsible for the homeostatic and metabolic support of retinal neurons. By mediating transcellular ion, water, and bicarbonate transport, Müller cells control the composition of the extracellular space fluid. Müller cells provide trophic and anti-oxidative support of photoreceptors and neurons and regulate the tightness of the blood-retinal barrier. By the uptake of glutamate, Müller cells are more directly involved in the regulation of the synaptic activity in the inner retina. This review gives a survey of recently discoved new functions of Müller cells. Müller cells are living optical fibers that guide light through the inner retinal tissue. Thereby they enhance the signal/noise ratio by minimizing intraretinal light scattering and conserve the spatial distribution of light patterns in the propagating image. Müller cells act as soft, compliant embedding for neurons, protecting them in case of mechanical trauma, and also as soft substrate required for neurite growth and neuronal plasticity. Müller cells release neuroactive signaling molecules which modulate neuronal activity, are implicated in the mediation of neurovascular coupling, and mediate the homeostasis of the extracellular space volume under hypoosmotic conditions which are a characteristic of intense neuronal activity. Under pathological conditions, a subset of Müller cells may differentiate to neural progenitor/stem cells which regenerate lost photoreceptors and neurons. Increasing knowledge of Müller cell function and responses in the normal and diseased retina will have great impact for the development of new therapeutic approaches for retinal diseases.
Virtually all pathogenic stimuli activate Müller cells. Reactive Müller cells exert protective and toxic effects on photoreceptors and neurons. They contribute to oxidative stress and glutamate toxicity due to malfunctions of glutamate uptake and glutathione synthesis. Downregulation of potassium conductance disrupts transcellular potassium and water transport, resulting in neuronal hyperexcitability and edema. Protective effects of reactive Müller cells include upregulation of adenosine 5′-triphosphate (ATP)-degrading ectoenzymes, which enhances the extracellular availability of the neuroprotectant adenosine, abrogation of the osmotic release of ATP, which might protect retinal ganglion cells from apoptosis, and the release of antioxidants and neurotrophic factors. The dedifferentiation of reactive Müller cells to progenitor-like cells might have an impact on future therapeutic approaches. A better understanding of the gliotic mechanisms will be helpful in developing efficient therapeutic strategies aiming at increased protective and regenerative properties and decreased toxicity of reactive Müller cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.