Digital games are increasingly profiting from sensing technologies. However, their focus is mostly on sensing limb movements. We propose that sensing capabilities could also be used to engage players with proxemics: the interpersonal distance between players. We further add that wireless networks offer complementary distance zones for designers, offering novel design resources for digital play. We use our own as well as other games to articulate a set of strategies on how designers can utilize both proxemics and the new wireless proxemics to facilitate novel play experiences. Ultimately, with our work, we aim to expand the range of digital play.
As more interactive surfaces enter public life, casual interactions from passersby are bound to increase. Most of these users can be expected to carry a mobile phone or PDA, which nowadays offers significant computing capabilities of its own. This offers new possibilities for interaction between these users' private displays and large public ones.In this paper, we present a system which supports such casual interactions. We first explore a method to track mobile phones that are placed on a horizontal interactive surface by examining the shadows which are cast on the surface. This approach detects the presence of a mobile device, as opposed to any other opaque object, through the signal strength emitted by the built-in Bluetooth transceiver without requiring any modifications to the devices' software or hardware.We then go on to investigate interaction between a Sudoku game running in parallel on the public display and on mobile devices carried by passing users. Mobile users can join a running game by placing their devices on a designated area. The only requirement is that the device is in discoverable Bluetooth mode. After a specific device has been recognized, a client software is sent to the device which then enables the user to interact with the running game. Finally, we explore the results of a study which we conducted to determine the effectiveness and intrusiveness of interactions between users on the tabletop and users with mobile devices.
This poster abstract describes the seamless integration of uninstrumented mobile devices into an interactive surface environment. By combining a depth camera with a RGB camera for tracking, we are able to identify uninstrumented mobile devices using visual marker tracking. We describe the technical details of combining the two cameras and an example application for the integration of mobile devices.
In this poster we present the development process of natural interaction for card games on multiple devices. Our goal was to provide users with an application that can be interacted with similar to real cards. It is a critical part of actual game play that all users can observe clearly what actions are performed by each player. To imitate such flexible use of cards in real games, we did not implement any game rules in our system. Rather, we strived towards making all computer-related user interactions as clear and visible to all players as manipulations of real cards. For the development of our system we used an iterative user-centered design approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.