Background: Deltoid ligament injury occurs often with supination-external rotation (SER) ankle trauma. SER fibula fractures with concomitant deltoid ligament injury are considered unstable—requiring operative fixation. Recent studies have questioned this general practice with emphasis on better defining the medial side ankle ligamentous injury. The function of the individual bands of the deltoid ligament, and the interplay between them, are not fully understood. We undertook this study to develop a better understanding of these complex ligamentous structures and ultimately aid assessment and treatment choice of SER ankle fractures with concomitant deltoid ligament injuries. Methods: Ten fresh-frozen cadaveric foot and ankle specimens were studied. We identified the various ligament bands and did a functional analysis by assessment of ligament length and tension at predefined angles of ankle dorsi-plantarflexion combined with valgus/varus and rotation. The results were determined by manual evaluation with calipers and goniometers, manual stress, and direct visualization. Results: We recorded primarily 5 different bands of the deltoid ligament: the tibionavicular (TNL; 10/10) tibiospring (TSL; 9/10), tibiocalcaneal (TCL; 10/10), deep anterior tibiotalar (dATTL; 9/10), and deep posterior tibiotalar (dPTTL; 10/10) ligaments. The tibiospring ligament was tense in plantarflexion, while the tibiocalcaneal and deep posterior tibiotalar ligaments were tense in dorsiflexion. The superficial layer ligaments and the deep anterior tibiotalar ligament length and tension were largely affected by changes in varus/valgus and rotation. The deep posterior tibiotalar ligament length and tension was altered predominantly by changes in dorsi-plantarflexion; varus/valgus positioning had a minor effect on this band. Conclusions: We confirmed the finding of previous studies that dorsi-plantarflexion affects the tensile engagement of the separate ligament bands differently. Likewise, combined movements with varus/valgus and rotation seem to affect the separate ligament bands differently. Our results suggest that the TNL, TSL, and dATTL are at risk of injury, whereas the TCL and particularly the dPTTL are protected in the event of an SER-type ankle fracture mechanism of injury. Level of Evidence Level V, cadaveric study.
Background: Conventionally, transsyndesmotic fibula fractures with concomitant signs of deltoid ligament injury have been considered unstable and thus treated operatively. Recent studies have indicated that partial deltoid ligament rupture is common and may allow for nonoperative treatment of stress-unstable ankles if normal tibiotalar alignment is obtained in the weightbearing position. Biomechanical support for this principle is scarce. The purpose of this study was to evaluate the biomechanical effects of gradually increasing deltoid ligament injury in transsyndesmotic fibula fractures. Methods: Fifteen cadaveric ankle specimens were tested using an industrial robot. All specimens were tested in 4 states: native, SER2, SER4a, and SER4b models. Ankle stability was measured in lateral translation, valgus, and internal and external rotation stress in 3 talocrural joint positions: 20 degrees plantarflexion, neutral, and 10 degrees dorsiflexion. Talar shift and talar valgus tilt in the talocrural joint was measured using fluoroscopy. Results: In most tests, SER2 and SER4a models resulted in a small instability increase compared to native joints and thus were deemed stable according to our predefined margins. However, SER4a models were unstable when tested in the plantarflexed position and for external rotation in all positions. In contrast, SER4b models had large-magnitude instability in all directions and all tested positions and were thus deemed unstable. Conclusion: This study demonstrated substantial increases in instability between the SER4a and SER4b states. This controlled cadaveric simulation suggests a significant ankle-stabilizing role of the deep posterior deltoid after oblique transsyndesmotic fibular fracture and transection of the superficial and anterior deep deltoid ligaments. Clinical Relevance: The study provides new insights into how the heterogenicity of deltoid ligament injuries can affect the natural stability of the ankle after Weber B fractures. These findings may be useful in developing more targeted and better treatment strategies.
Purpose Treatment of anterior glenoid bone loss in patients with recurrent anterior shoulder instability is a challenge. The subscapular sling method with quadriceps tendon bone (QTB) graft is a modification of the subscapular sling with a semitendinosus (ST) graft. The aim of the study was to test the biomechanical stability of the QTB sling procedure in human shoulder cadavers with severe anterior glenoid bone loss. Methods Fourteen cadaveric shoulders were tested with a force-moment-guided robot in three conditions: physiologically intact, anterior glenoid bone resection, and the subscapular sling procedure with a QTB graft. Joint stability was measured in anterior, anterior inferior and inferior directions in four glenohumeral joint positions: 0° and 60° of glenohumeral abduction, with each at 0° and 60° of external rotation. Maximum external rotation was measured at 0° and 60° glenohumeral abduction. Computer tomography scans were obtained preoperatively to plan the glenoid bone resection, as well as postoperatively to calculate the proportion of the glenoid bone actually resected. Results Significantly decreased translations were observed in the shoulders with the QTB sling compared to the intact joint and the glenoid bone loss model. No significant differences in maximum external rotation were observed between the three different conditions. Conclusion This biomechanical study revealed a significant stabilizing effect of the arthroscopic subscapular QTB graft sling procedure in human shoulder cadavers without compromising external rotation. Clinical trials may reveal the usefulness of this experimental method. Keywords Shoulder instability • Arthroscopic sling procedure • Quadriceps tendon bone graft • Subscapular tendon • Biomechanical cadaver study • Glenoid bone loss This project involves highly qualified orthopedic surgeons from
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.