CP2K is an open source electronic structure and molecular dynamics software package to perform atomistic simulations of solid-state, liquid, molecular, and biological systems. It is especially aimed at massively parallel and linear-scaling electronic structure methods and state-of-the-art ab initio molecular dynamics simulations. Excellent performance for electronic structure calculations is achieved using novel algorithms implemented for modern high-performance computing systems. This review revisits the main capabilities of CP2K to perform efficient and accurate electronic structure simulations. The emphasis is put on density functional theory and multiple post–Hartree–Fock methods using the Gaussian and plane wave approach and its augmented all-electron extension.
Second-order Møller−Plesset (MP2) calculations (using the approximate resolution of the identity, RI-MP2) in the TZVPP basis are performed to study the interaction of molecular hydrogen with the aromatic systems C6H5X (X = H, F, OH, NH2, CH3, and CN), C10H8 (naphthalene and azulene), C14H10 (anthracene), C24H12 (coronene), p-C6H4(COOH)2 (terephthalic acid), and p-C6H4(COOLi)2 (dilithium terephthalate). Various adsorption positions are studied for C6H5F. The most favorable configuration places H2 above the aromatic plane with its axis pointing toward the middle of the ring. The electronic (van der Waals) interaction energy for the differently substituted benzenes correlates with the ability of the substituents to enrich the aromatic system electronically. The largest interaction energy (among the singly substituted benzenes) is found for aniline (4.5 kJ mol-1). Enlarging the aromatic system increases the interaction energy; the value for coronene amounts to 5.4 kJ mol-1. Extending the basis set and including terms linear in the interelectronic distances increases the interaction energy by about 1 kJ mol-1 relative to that of the TZVPP basis, whereas the inclusion of higher excitations by coupled-cluster calculations (including all single and double excitations with a perturbative estimate of triples, CCSD(T)) decreases the interaction energy by about the same amount.
Abstract:A detailed description of the explicitly correlated second-order Møller-Plesset perturbation theory (MP2-F12) method, as implemented in the Turbomole program package, is presented. The Turbomole implementation makes use of density fitting, which greatly reduces the prefactor for integral evaluation. Methods are available for the treatment of ground states of open-and closed-shell species, using unrestricted as well as restricted (open-shell) Hartree-Fock reference determinants. Various methodological choices and approximations are discussed. The performance of the Turbomole implementation is illustrated by example calculations of the molecules leflunomide, prednisone, methotrexate, ethylenedioxytetrafulvalene, and a cluster model for the adsorption of methanol on the zeolite H-ZSM-5. Various basis sets are used, including the correlation-consistent basis sets specially optimized for explicitly correlated calculations (cc-pVXZ-F12).
Mg(AlH(4))(2) was produced as a nanocrystalline powder by metathesis of NaAlH(4) and MgCl(2). Starting with a structure estimation which was developed from an evaluation of FTIR data and comparison of structural properties of two solvent adducts, quantum chemical calculations were performed on the density functional theory (DFT) level. The calculated atomic positions were used to simulate an X-ray powder diffraction pattern, based on a trigonal unit cell. The simulated pattern was congruent to experimental data. Thus, magnesium alanate exhibits a CdI(2) layer structure, the layers being formed by Mg atoms occupying the Cd sites and AlH(4) tedrahedra occupying the sites of the iodine atoms in CdI(2).
Reliable thermochemical data for the reaction SO3 + H2O<-->SO3 x H2O (1a) are of crucial importance for an adequate modeling of the homogeneous H2SO4 formation in the atmosphere. We report on high-level quantum chemical calculations to predict the binding energy of the SO3 x H2O complex. The electronic binding energy is accurately computed to De = 40.9+/-1.0 kJ/mol = 9.8+/-0.2 kcal/mol. By using harmonic frequencies from density functional theory calculations (B3LYP/cc-pVTZ and TPSS/def2-TZVP), zero-point and thermal energies were calculated. From these data, we estimate D0 = -Delta H(1a)0(0 K) = 7.7+/-0.5 kcal/mol and Delta H(1a)0(298 K) = -8.3+/-1.0 kcal/mol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.