The temporal evolution of soil organic carbon (SOC) is of major importance given its status as a key parameter in many soil functions. Furthermore, soils constitute an important reservoir of carbon in our environment. In light of climate change, consistent SOC data over extended periods in combination with information on agricultural management are much required, but still scarce. We report SOC changes in the topsoil (0–20 cm) of Swiss cropland measured at well-defined monitoring sites resampled every 5 years from 1990 to 2014 by the Swiss Soil Monitoring Network NABO using consistent sampling protocols and quality assurance. Data on agricultural management practices were retrieved from farmers. Overall, SOC remained stable for the ensemble of monitoring sites, although increasing and decreasing trends were observed for individual sites, ranging from − 11 to + 16% relative change per decade. Changes in the agricultural management of cropland triggered substantial changes in SOC contents for some sites. Moreover, sites with a low ratio of SOC/clay (< 0.1) generally showed more positive trends than sites with higher ratios. We presume that SOC was either at or near steady state, given the consistency of management practices over the last few decades. Finally, our study provides insights into the uncertainties related to (real-world) SOC monitoring and underlines the relevance of short-term SOC variations that could hamper the detection of long-term trends. The minimum detectable change (MDC) by the applied monitoring scheme is estimated at 0.35% per year, in relative terms. Electronic supplementary material The online version of this article (10.1007/s10661-019-7435-y) contains supplementary material, which is available to authorized users.
Despite the importance of soil microorganisms for ecosystem services, long‐term surveys of their communities are largely missing. Using metabarcoding, we assessed temporal dynamics of soil bacterial and fungal communities in three land‐use types, i.e., arable land, permanent grassland, and forest, over five years. Soil microbial communities remained relatively stable and differences over time were smaller than those among sites. Temporal variability was highest in arable soils. Indications for consistent shifts in community structure over five years were only detected at one site for bacteria and at two sites for fungi, which provided further support for long‐term stability of soil microbial communities. A sliding window analysis was applied to assess the effect of OTU abundance on community structures. Partial communities with decreasing OTU abundances revealed a gradually decreasing structural similarity with entire communities. This contrasted with the steep decline of OTU abundances, as subsets of rare OTUs (<0.01%) revealed correlations of up to 0.97 and 0.81 with the entire bacterial and fungal communities. Finally, 23.4% of bacterial and 19.8% of fungal OTUs were identified as scarce, i.e., neither belonging to site‐cores nor correlating to environmental factors, while 67.3% of bacterial and 64.9% of fungal OTUs were identified as rare but not scarce. Our results demonstrate high stability of soil microbial communities in their abundant and rare fractions over five years. This provides a step towards defining site‐specific normal operating ranges of soil microbial communities, which is a prerequisite for detecting community shifts that may occur due to changing environmental conditions or anthropogenic activities.
Although polycyclic aromatic hydrocarbons (PAH) are of concern due to their carcinogenic, mutagenic, and teratogenic properties and their ubiquitous occurrence in environmental compartments, only few studies assessed the temporal evolutions of PAH contents of soils over extended time periods. The Swiss Soil Monitoring Network NABO runs long-term monitoring sites resampled every five years since the 1980s. In the present study, soil (0-20 cm) samples collected from 1985 through 2013 at 25 selected monitoring sites were analysed for the 16 priority PAH according to the U.S. EPA and five PAH marker substances. We observed divergent trends for light PAH, such as naphthalene and phenanthrene, compared with heavy PAH, such as benzo[a]pyrene and benzo[ghi]perylene. Whereas the former showed decreasing concentrations since the late 1980s, no significant trends were found for the latter. Furthermore, the analyses showed that naphthalene contents decreased most strongly at rural sites featuring low population densities, while phenanthrene contents generally decreased most strongly at semi-rural sites. The deviating evolutions of light and heavy PAH were mainly attributed to their differing physico-chemical properties. Temporal evolutions in soils contradict emission inventory data suggesting PAH emissions to decline since the 1980s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.