A compact and calibration-free carbon monoxide sensor approach utilizing the wide current-tunability of 2.3 µm VCSELs is reported. A separate reference cell is avoided by filling the reference gas (methane) in the photodetector housing. By applying bandwidth optimized wide/narrow wavelength scan concept, inherent wavelength scale calibration and self-monitoring of the sensor are realized, with which the laser aging process is also under control. An efficient linear least-squares curve fit using an analytical signal model for the narrow scan spectrum is done, utilizing the knowledge of the absolute wavelength scale and also the estimated WMS modulation amplitude obtained from the wide scan. The scan width of the narrow spectrum is optimized aiming at the maximum signal to noise ratio on the determined CO concentration. These concepts are universal and can be utilized for optical sensing of other gases as well and the sensor was tested under diverse applications e.g. fire detection and combustion optimization.
We demonstrate an ultralow sample volume optical carbon monoxide sensor with detection sensitivity of 180 parts in 10 9 (1σ at 1 Hz). The utilization of a 2:3 μm surface-emitting laser directly coupled to a 3 m hollow capillary fiber as the gas cell is proven to be a compact, sensitive, and cost-efficient gas sensing concept. By mechanical vibration of the fiber, an absorbance resolution of 10 −5 is achieved, which is comparable to single-reflective (double-pass) cells. An improvement of sensitivity over the conventional single-reflective cell is thus approximately linearly scaled with the enhancement of the optical path length, which is usually more than 1 order of magnitude.
Both intensity- (IM) and frequency-modulation (FM) behavior of a directly modulated quantum cascade laser (QCL) are measured from 300 Hz to 1.7 GHz. Quantitative measurements of tuning coefficients has been performed and the transition from thermal- to electronic-tuning is clearly observed. A very specific FM behavior of QCLs has been identified which allows for optical quasi single sideband (SSB) modulation through current injection and has not been observed in directly modulated semiconductor lasers before. This predestines QCLs in applications where SSB is required, such as telecommunication or high speed spectroscopy. The experimental procedure and theoretical modeling for data extraction is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.