Pex5p is the receptor for the peroxisomal targeting signal 1 (PTS1) that consists of a C-terminal tripeptide (consensus (S/A/C)(K/R/H)(L/M)). Hexadecapeptides recognized by Pex5p from Homo sapiens and Saccharomyces cerevisiae were identified by screening a two-hybrid peptide library, and the targeting ability of the peptides was demonstrated using the green fluorescent protein as reporter. The PTS1 receptors recognized in a speciesspecific manner a broad range of C-terminal tripeptides, and these are reported herein. In addition, residues upstream of the tripeptide influenced the strength of the interaction in the two-hybrid system as well as in an in vitro competition assay. In peptides interacting with the human protein, hydrophobic residues were found with high frequency especially at positions ؊2 and ؊5, whereas peptides interacting with S. cerevisiae Pex5p were more hydrophilic and frequently contained arginine at position ؊2. In instances where the terminal tripeptide deviated from the consensus, upstream residues exerted a greater influence on the ability of the hexadecapeptides to bind Pex5p.
Originally, the peroxisomal targeting signal 1 (PTS1) was defined as a tripeptide at the C-terminus of proteins prone to be imported into the peroxisomal matrix. The corresponding receptor PEX5 initiates the translocation of proteins by identifying potential substrates via their C-termini and trapping PTS1s through remodeling of its TPR domain. Thorough studies on the interaction between PEX5 and PTS1 as well as sequence-analytic tools revealed the influence of amino acid residues further upstream of the ultimate tripeptide. Altogether, PTS1s should be defined as dodecamer sequences at the C-terminal ends of proteins. These sequences accommodate physical contacts with both the surface and the binding cavity of PEX5 and ensure accessibility of the extreme C-terminus. Knowledge-based approaches in applied Bioinformatics provide reliable tools to accurately predict the peroxisomal location of proteins not yet determined experimentally.
The glyoxylate cycle provides the means to convert C2-units to C4-precursors for biosynthesis, allowing growth on fatty acids and C2-compounds. The conventional view that the glyoxylate cycle is contained within peroxisomes in fungi and plants is no longer valid. Glyoxylate cycle enzymes are located both inside and outside the peroxisome. Thus, the operation of the glyoxylate cycle requires transport of several intermediates across the peroxisomal membrane. Glyoxylate cycle progression is also dependent upon mitochondrial metabolism. An understanding of the operation and regulation of the glyoxylate cycle, and its integration with cellular metabolism, will require further investigation of the participating metabolite transporters in the peroxisomal membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.