Glycosylphosphatidylinositol (GPI) anchoring is a common post-translational modification of extracellular eukaryotic proteins. Attachment of the GPI moiety to the carboxyl terminus (omega-site) of the polypeptide occurs after proteolytic cleavage of a C-terminal propeptide. In this work, the sequence pattern for GPI-modification was analyzed in terms of physical amino acid properties based on a database analysis of annotated proprotein sequences. In addition to a refinement of previously described sequence signals, we report conserved sequence properties in the regions omega - 11...omega - 1 and omega + 4...omega + 5. We present statistical evidence for volume-compensating residue exchanges with respect to the positions omega - 1...omega + 2. Differences between protozoan and metazoan GPI-modification motifs consist mainly in variations of preferences to amino acid types at the positions near the omega-site and in the overall motif length. The variations of polypeptide substrates are exploited to suggest a model of the polypeptide binding site of the putative transamidase, the enzyme catalyzing the GPI-modification. The volume of the active site cleft accommodating the four residues omega - 1...omega + 2 appears to be approximately 540 A3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.