Posttranslational glycosylphosphatidylinositol (GPI) lipid anchoring is common not only for animal and fungal but also for plant proteins. The attachment of the GPI moiety to the carboxyl-terminus after proteolytic cleavage of a C-terminal propeptide is performed by the transamidase complex. Its four known subunits also have obvious full-length orthologs in the Arabidopsis and rice (Oryza sativa) genomes; thus, the mechanism of substrate protein processing appears similar for all eukaryotes. A learning set of plant proteins (substrates for the transamidase complex) has been collected both from the literature and plant sequence databases. We find that the plant GPI lipid anchor motif differs in minor aspects from the animal signal (e.g. the plant hydrophobic tail region can contain a higher fraction of aromatic residues). We have developed the "big-⌸ plant" program for prediction of compatibility of query protein C-termini with the plant GPI lipid anchor motif requirements. Validation tests show that the sensitivity for transamidase targets is approximately 94%, and the rate of false positive prediction is about 0.1%. Thus, the big-⌸ predictor can be applied as unsupervised genome annotation and target selection tool. The program is also suited for the design of modified protein constructs to test their GPI lipid anchoring capacity. The big-⌸ plant predictor Web server and lists of potential plant precursor proteins in Swiss-Prot, SPTrEMBL, Arabidopsis, and rice proteomes are available at http://mendel.imp.univie.ac.at/gpi/plants/gpi_plants.html. Arabidopsis and rice protein hits have been functionally classified. Several GPI lipid-anchored arabinogalactan-related proteins have been identified in rice.
Many posttranslational modifications (N-myristoylation or glycosylphosphatidylinositol (GPI) lipid anchoring) and localization signals (the peroxisomal targeting signal PTS1) are encoded in short, partly compositionally biased regions at the N- or C-terminus of the protein sequence. These sequence signals are not well defined in terms of amino acid type preferences but they have significant interpositional correlations. Although the number of verified protein examples is small, the quantification of several physical conditions necessary for productive protein binding with the enzyme complexes executing the respective transformations can lead to predictors that recognize the signals from the amino acid sequence of queries alone. Taxon-specific prediction functions are required due to the divergent evolution of the active complexes. The big-Pi tool for the prediction of the C-terminal signal for GPI lipid anchor attachment is available for metazoan, protozoan and plant sequences. The myristoyl transferase (NMT) predictor recognizes glycine N-myristoylation sites (at the N-terminus and for fragments after processing) of higher eukaryotes (including their viruses) and fungi. The PTS1 signal predictor finds proteins with a C-terminus appropriate for peroxisomal import (for metazoa and fungi). Guidelines for application of the three WWW-based predictors (http://mendel.imp.univie.ac.at/) and for the interpretation of their output are described.
Function prediction of proteins with computational sequence analysis requires the use of dozens of prediction tools with a bewildering range of input and output formats. Each of these tools focuses on a narrow aspect and researchers are having difficulty obtaining an integrated picture. ANNIE is the result of years of close interaction between computational biologists and computer scientists and automates an essential part of this sequence analytic process. It brings together over 20 function prediction algorithms that have proven sufficiently reliable and indispensable in daily sequence analytic work and are meant to give scientists a quick overview of possible functional assignments of sequence segments in the query proteins. The results are displayed in an integrated manner using an innovative AJAX-based sequence viewer. ANNIE is available online at: http://annie.bii.a-star.edu.sg. This website is free and open to all users and there is no login requirement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.