The Fresnel reflections occurring at the interfaces of a silicon wafer shall be drastically reduced by reactive ion beam etching of so called moth-eye structures into both surfaces of the wafer. This kind of impedance matching is advantageous to a multilayer interference system when the silicon wafer shall be used as an entrance window for high temperature thermopile infrared radiation sensors and emitters. The transmission was measured to be increased by more then 60%, compared to a polished silicon wafer.
We present electrochemical and chemical synthesis of platinum black at room temperature in aqueous and non-aqueous media. X-ray analysis established the purity and crystalline nature. The electron micrographs indicate that the nanostructures consist of platinum crystals that interconnect to form porous assemblies. Additionally, the electron micrographs of the platinum black thin layer, which was electrochemically deposited on different metallic and semiconductive substrates (aluminium, platinum, silver, gold, tin-cooper alloy, indium-tin-oxide, stainless steel, and copper), indicate that the substrate influences its porous features but not its absorbance characteristics. The platinum black exhibited a broad absorbance and low reflectance in the ultraviolet, visible, and infrared regions. These characteristics make this material suitable for use as a high-temperature resistant absorber layer for the fabrication of microelectronics.
We report on fast terahertz detectors based on antenna-coupled BiSb/Sb thermoelements operating at room temperature. A response time of the thermocouples as low as 22 μs and a noise equivalent power of 170 pW/Hz at 1 kHz modulation frequency is measured in air at room temperature. The integration capability of these mass producible devices enables large-scale detector arrays for real-time terahertz imaging applications. Due to the fast response time, multiplexing of the detectors can be used to reduce the required readout circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.