The Fresnel reflections occurring at the interfaces of a silicon wafer shall be drastically reduced by reactive ion beam etching of so called moth-eye structures into both surfaces of the wafer. This kind of impedance matching is advantageous to a multilayer interference system when the silicon wafer shall be used as an entrance window for high temperature thermopile infrared radiation sensors and emitters. The transmission was measured to be increased by more then 60%, compared to a polished silicon wafer.
Illumination based on objective-type total internal reflection (TIR) is nowadays widely used in high-performance fluorescence microscopy. However, the desirable application of such setups for dark-field imaging of scattering entities is cumbersome due to the spatial overlap of illumination and detection light, which cannot be separated spectrally. Here, we report a novel TIR approach based on a parabolically shaped quartz prism that allows for the detection of single-molecule fluorescence as well as single-particle scattering with high signal-to-noise ratios. We demonstrate homogeneous and spatially invariant illumination profiles in combination with a convenient control over a wide range of illumination angles. Moreover, we quantitatively compare the fluorescence performance of our setup to objective-type TIR and demonstrate sub-nanometer localization accuracies for the scattering of 40 nm gold nanoparticles (AuNPs). When bound to individual kinesin-1 motors, the AuNPs reliably report on the characteristic 8 nm stepping along microtubules.
The working principle of an optical isolator made of two corrugated dielectric gratings is introduced. One grating acts as a polarizer, and the other acts as a quarter-wave plate used in conical incidence converting linearly polarized light into circularly polarized light. Global maxima of diffraction efficiency for surface-corrugated gratings with binary, sinusoidal, and pyramidal ridge shapes with dependence on the material index are identified. Regarding technological feasibility for use in the visible wavelength range, high-frequency gratings with a binary shape were realized. With these gratings, an extinction ratio of more than 40 dB for the polarizer is theoretically possible, and more than 20 dB was experimentally achieved. A good correlation between theoretically calculated efficiencies and birefringences based on rigorous methods and the experimental results is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.