Quality-space theory (QST) explains the nature of the mental qualities distinctive of perceptual states by appeal to their role in perceiving. QST is typically described in terms of the mental qualities that pertain to color. Here we apply QST to the olfactory modalities. Olfaction is in various respects more complex than vision, and so provides a useful test case for QST. To determine whether QST can deal with the challenges olfaction presents, we show how a quality space (QS) could be constructed relying on olfactory perceptible properties and the olfactory mental qualities then defined by appeal to that QS of olfactory perceptible properties. We also consider how to delimit the olfactory QS from other modalities. We further apply QST to the role that experience plays in refining our olfactory discriminative abilities and the occurrence of olfactory mental qualities in non-conscious olfactory states. QST is shown to be fully applicable to and useful for understanding the complex domain of olfaction.
Humans can discriminate several million different colors and almost half a million different tones, but the number of discriminable olfactory stimuli remains unknown. The lay and scientific literature typically claims that humans can discriminate 10,000 odors, but this number has never been empirically validated. Here, we determined the resolution of the human sense of smell by testing the capacity of humans to discriminate odor mixtures with varying numbers of shared components. Based on the results of psychophysical testing, we calculated that humans can discriminate at least one trillion olfactory stimuli. This is far more than previous estimates of distinguishable olfactory stimuli. It demonstrates that the human olfactory system, with its hundreds of different olfactory receptors, far outperforms the other senses in the number of physically different stimuli it can discriminate.
Human olfactory perception differs enormously between individuals, with large reported perceptual variations in the intensity and pleasantness of a given odour. For instance, androstenone (5alpha-androst-16-en-3-one), an odorous steroid derived from testosterone, is variously perceived by different individuals as offensive ("sweaty, urinous"), pleasant ("sweet, floral") or odourless. Similar variation in odour perception has been observed for several other odours. The mechanistic basis of variation in odour perception between individuals is unknown. We investigated whether genetic variation in human odorant receptor genes accounts in part for variation in odour perception between individuals. Here we show that a human odorant receptor, OR7D4, is selectively activated in vitro by androstenone and the related odorous steroid androstadienone (androsta-4,16-dien-3-one) and does not respond to a panel of 64 other odours and two solvents. A common variant of this receptor (OR7D4 WM) contains two non-synonymous single nucleotide polymorphisms (SNPs), resulting in two amino acid substitutions (R88W, T133M; hence 'RT') that severely impair function in vitro. Human subjects with RT/WM or WM/WM genotypes as a group were less sensitive to androstenone and androstadienone and found both odours less unpleasant than the RT/RT group. Genotypic variation in OR7D4 accounts for a significant proportion of the valence (pleasantness or unpleasantness) and intensity variance in perception of these steroidal odours. Our results demonstrate the first link between the function of a human odorant receptor in vitro and odour perception.
Olfactory sensory neurons (OSNs) form synapses with local interneurons and second-order projection neurons to form stereotyped olfactory glomeruli. This primary olfactory circuit is hard-wired through the action of genetic cues. We asked whether individual glomeruli have the capacity for stimulus-evoked plasticity by focusing on the carbon dioxide (CO2) circuit in Drosophila. Specialized OSNs detect this gas and relay the information to a dedicated circuit in the brain. Prolonged exposure to CO2 induced a reversible volume increase in the CO2-specific glomerulus. OSNs showed neither altered morphology nor function after chronic exposure, but one class of inhibitory local interneurons showed significantly increased responses to CO2. Two-photon imaging of the axon terminals of a single PN innervating the CO2 glomerulus showed significantly decreased functional output following CO2 exposure. Behavioral responses to CO2 were also reduced after such exposure. We suggest that activity-dependent functional plasticity may be a general feature of the Drosophila olfactory system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.