The coordination of low-valent group 13 organyls E I R [E = Al, Ga, In; R = Cp*, C(SiMe 3 ) 3 ] to transition metals has attracted increasing interest over the past decade. Complexes and cluster compounds of these new ligands with a number of transition metals have been isolated and characterised. The E I R moiety is formally isolobal with CO and PR 3 (R = alkyl, Cp*) or carbenes (R = chelating group) with varying σ-donor and π-acceptor properties depending on the organic group R
The understanding of the molecular mechanisms underlying the early stages of crystallisation is still incomplete. In the case of calcium carbonate, experimental and computational evidence suggests that phase separation relies on so-called pre-nucleation clusters (PNCs). A thorough thermodynamic analysis of the enthalpic and entropic contributions to the overall free energy of PNC formation derived from three independent methods demonstrates that solute clustering is driven by entropy. This can be quantitatively rationalised by the release of water molecules from ion hydration layers, explaining why ion association is not limited to simple ion pairing. The key role of water release in this process suggests that PNC formation should be a common phenomenon in aqueous solutions.
The aqueous calcium carbonate system is rigorously investigated with respect to ionic activity. Ideal treatment is found to be a good approximation at relevant concentrations. The data further show that bound CaCO3 species cannot be regarded as "inactive" during nucleation but rather appear to play a key role in the phase-separation process, and that amorphous calcium carbonate (ACC) can be precipitated from much lower levels of supersaturation than previously believed.
We use time-resolved cryogenic transmission electron microscopy (TR-cryo-TEM) on a supersaturated solution of calcium sulfate hemihydrate to examine the early stages of particle formation during the hydration of the hemihydrate. As hydration proceeds, we observe nanoscale amorphous clusters that evolve to amorphous particles and then reorganize to crystalline gypsum within tens of seconds. Our results indicate that a multistep particle formation model, where an amorphous phase forms first, followed by the transformation into a crystalline product, is applicable even at time scales of the order of tens of seconds for this system. The addition of a small amount of citric acid significantly delays the reorganization to gypsum crystals. We hypothesize that available calcium ions form complexes with the acid by binding to the carboxylic groups. Their incorporation into a growing particle produces disorder and extends the time over which the amorphous phase exists. We see evidence of patches of "trapped" amorphous phase within the growing gypsum crystals at time scales of the order of 24 h. This is confirmed by complementary X-ray diffraction experiments. Direct imaging of nanoscale samples by TR-cryo-TEM is a powerful technique for a fundamental understanding of crystallization and many other evolving systems.
Bassanite is a metastable but industrially important form of calcium sulfate, which is commonly produced by heating of gypsum. Here we show that pure bassanite can also be obtained at ambient conditions by quenching aqueous CaSO 4 solutions in ethanol. This highlights that organic solvents can actually induce the formation of metastable phases rather than freezing precipitation processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.