Chitosan crosslinked with glutaraldehyde or oxidised dextran was studied as a potential scaffold material in tissue engineering for cartilage regeneration. By mixing two solutions of both components it became a gel, which was frozen. After lyophilization a scaffold was generated with interconnected pores with diameters ranging between 120-350 microm. The mechanical properties (yielding point, elastic and viscous moduli), absolute porosity, pore morphology were determined depending on the ratio of chitosan to crosslinker. ATDC5 (murine cell line) and bovine articular chondrocytes (primary cells) were cultured for 14 days on the scaffolds. Cultivation with ATDC5 cells and bovine chondrocytes showed no negative influence of glutaraldehyde on cell vitality and growth.
Although gluing bone is in theory a very attractive alternative to classical fracture treatment, this method is not yet clinically established due to the lack of an adhesive which would meet all the necessary requirements. We therefore developed a novel two-component bioadhesive system with the potential to be used as a bone adhesive based on biocompatible and degradable biopolymers (chitosan, oxidised dextran or starch). After mixing in water, the two components covalently cross-link by forming a Schiff's base. By the same mechanism, the glue binds to any other exposed amino group such as for example those exposed in fractured bone, even in the presence of water. Modified chitosan was synthesised from commercially available chitosan by deacetylation and was then reduced in molecular weight by heating in acid. The amount of free amino groups was analysed by IR. The molecular weight was determined by viscosimetry. Starch or dextran were oxidised with periodic acid to generate aldehyde groups, which were quantified by titration. l-Dopa was conjugated to oxidised dextran or starch in analogy to the gluing mechanism of mussels. Biomechanical studies revealed that the new glue is superior to fibrin glue, but has less adhesive strength than cyanoacrylates. In vitro cell testing demonstrated excellent biocompatibility, rendering this glue a potential candidate for clinical use.
The present study addresses the problem of simultaneous surface modification of various polymers, i.e. polysulfone (PSU), polycarbonate (PC), and polyurethane (PU), which constitute the Ultraflux AV 600 S hollow fibre hemodialyser. An investigation was first made into six different chemical routes aimed at introducing carboxyl groups onto the surface of PSU, PC, and PU model polymers to which heparin (HE) or endothelial cell surface heparan sulfate (ESHS) was covalently bound via the reaction of residual amino groups and a coupling reagent. Carboxyl groups were introduced using three specific reactions based on their nucleophilic or electrophilic introduction into aromatic repeating units of the polymers and three non-specific carboxylation reactions, i.e. UV, heat or redoxactivation via nitrene or radical species. Concentrations of 1-20 nmol COOH groups per cm(-2) led to HE or ESHS surface concentrations corresponding to one or several layers. Two nonspecific carboxylation reactions followed by HE- or ESHS-coupling provided the lowest change in membrane pore structure according to cut off, clearance (urea, phosphate, maltose), ultrafiltration, and diafiltration assessments. In some cases the introduction of excess negatively-charged carboxyl groups and HE improved the flux properties of the modified membranes. The various methods were applied to the dialysis module. Platelet adhesion was not observed in the case of the ESHS-coating of PSU membrane at shear rates of 1050 s(-1), whereas HE and subendothelial matrix showed 56 and 100% coverage, respectively, under similar conditions. The coating of PSU or of other high-flux membranes by ESHS appears a promising method for improving membrane properties and to generate biocompatibility characteristics similar to those of natural blood vessels, i.e. inertness to platelet adhesion and no level effects for complement and intrinsic coagulation cascade activation. The ESHS coating may be used without anticoagulants.
This in vitro study evaluated the antibacterial effect of copper additives in silicone implants. Specimens of a standard silicone material used in breast augmentation and modified copper-loaded silicone specimens were prepared and incubated in a Staphylococcus epidermidis suspension (2 h, 37 degrees C). After the quantification of adhering staphylococci using a biofluorescence assay (Resazurin), the viability of the adhering bacterial cells was quantified by live or dead cell labeling in combination with fluorescence microscopy. In the Resazurin fluorometric quantification, a higher amount of adhering S. epidermidis cells was detected on pure silicone (4612 [2319/7540] relative fluorescence units [rfu]) than on silicone with copper additives (2701 [2158/4153] rfu). Additionally, a significantly higher amount of adhering bacterial cells (5.07% [2.03%/8.93%]) was found for pure silicone than for silicone with copper additives (1.72% [1.26%/2.32%]); (p < 0.001). Calculations from live or dead staining showed that the percentage of dead S. epidermidis cells adhered on pure silicone (52.1%) was significantly lower than on silicone with copper additives (79.7%); (p < 0.001). In vitro, silicone material with copper additives showed antibacterial effects against S. epidermidis. Copper-loaded silicone may prevent bacterial colonization, resulting in lower infection rates of silicone implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.