Harvesting the full potential of single crystal semiconductor nanowires (NWs) for advanced nanoscale field-effect transistors (FETs) requires a smart combination of charge control architecture and functional semiconductors. In this article, high performance vertical gate-all-2 around nanowire p-type pFETs are presented. The device concept is based on advanced Ge0.92Sn0.08/Ge group IV epitaxial heterostructures, employing quasi-one-dimensional semiconductor nanowires fabricated with a top-down approach. The advantage of using a heterostructure is the possibility of electronic band engineering with band offsets tunable by changing the semiconductor stoichiometry and elastic strain. The use of a Ge0.92Sn0.08 layer as the source in GeSn/Ge NW pFETs results in a small subthreshold slope of 72 mV/dec and a high ION/IOFF ratio of 3×10 6 . A ~32% drive current enhancement is obtained compared to vertical Ge homojunction NW control devices. More interestingly, the drain-induced-barrier lowering is much smaller with GeSn instead of Ge as the source. The general improvement of the transistor's key figures of merits originates from the valence band offset at the Ge0.92Sn0.08/Ge heterojunction, as well as from a smaller NiGeSn/GeSn contact resistivity.
The capabilities of modern semiconductor manufacturing offer remarkable possibilities to be applied in life science research as well as for its commercialization. In this review, the technology modules available in micro- and nano-electronics are exemplarily presented for the case of 250 and 130 nm technology nodes. Preparation procedures and the different transistor types as available in complementary metal-oxide-silicon devices (CMOS) and BipolarCMOS (BiCMOS) technologies are introduced as key elements of comprehensive chip architectures. Techniques for circuit design and the elements of completely integrated bioelectronics systems are outlined. The possibility for life scientists to make use of these technology modules for their research and development projects via so-called multi-project wafer services is emphasized. Various examples from diverse fields such as (1) immobilization of biomolecules and cells on semiconductor surfaces, (2) biosensors operating by different principles such as affinity viscosimetry, impedance spectroscopy, and dielectrophoresis, (3) complete systems for human body implants and monitors for bioreactors, and (4) the combination of microelectronics with microfluidics either by chip-in-polymer integration as well as Si-based microfluidics are demonstrated from joint developments with partners from biotechnology and medicine. WIREs Nanomed Nanobiotechnol 2016, 8:355-377. doi: 10.1002/wnan.1367 For further resources related to this article, please visit the WIREs website.
The continued downscaling of silicon CMOS technology presents challenges for achieving the required low power consumption. While high mobility channel materials hold promise for improved device performance at low power levels, a material system which enables both high mobility n-FETs and p-FETs, that is compatible with Si technology and can be readily integrated into existing fabrication lines is required. Here, we present high performance, vertical nanowire gate-all-around FETs based on the GeSn-material system grown on Si. While the p-FET transconductance is increased to 850 µS/µm by exploiting the small band gap of GeSn as source yielding high injection velocities, the mobility in n-FETs is increased 2.5-fold compared to a Ge reference device, by using GeSn as channel material. The potential of the material system for a future beyond Si CMOS logic and quantum computing applications is demonstrated via a GeSn inverter and steep switching at cryogenic temperatures, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.