We report on direct evidence of ultrafast carrier dynamics displaying features on the picosecond time scale in microcrystalline silicon (c-Si:H). The dynamics of photogenerated carriers is studied by using above-band-gap optical excitation and probing the instantaneous carrier mobility and density with a THz pulse. Within the first picoseconds after excitation, the THz transmission transients show a fast initial decay of the photoinduced absorption followed by a slower decrease due to carrier recombination. We propose that the initial fast decay in the THz transients is due to carrier capture in the trapping states.
Both natural and synthetic crystals of pyrite, FeS2−x, have been analyzed chemically and examined structurally by transmission electron microscopy and x-ray powder diffraction. Chemical analysis and density measurements have shown the synthetic crystals, grown at 850 K, are frequently deficient in sulfur, with a composition of FeS2−x with x ⋚ 0.15. From a refinement of the pyrite structure using the integral intensities of the x-ray powder pattern, a variation in the sulfur population parameter was obtained ranging from 0.87(2) to 1.03(3). A correlation according to Vegard's rule between the population factor and the lattice parameter a0 has been proven. Transmission electron microscope examination revealed that the crystals did not contain a significant population of disorder defects which may account for this apparent sulfur deficit. Therefore the nonstoichiometry in pyrite has to be interpreted in terms of S vacancies which can be understood as the tendency of the material to reduce the high anion content in the unit cell. The structural nature of nonstoichiometric pyrite is discussed in relationship to other related disulfides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.