It is still debated whether alien plants benefit from being mycorrhizal, or if engaging in the symbiosis constrains their establishment and spread in new regions. We analyzed the association between mycorrhizal status of alien plant species in Germany and their invasion success. We compared whether the representation of species with different mycorrhizal status (obligate, facultative, or non-mycorrhizal) differed at several stages of the invasion process. We used generalized linear models to explain the occupied geographical range of alien plants, incorporating interactions of mycorrhizal status with plant traits related to morphology, reproduction, and life-history. Non-naturalized aliens did not differ from naturalized aliens in the relative frequency of different mycorrhizal status categories. Mycorrhizal status significantly explained the occupied range of alien plants; with facultative mycorrhizal species inhabiting a larger range than non-mycorrhizal aliens and obligate mycorrhizal plant species taking an intermediate position. Aliens with storage organs, shoot metamorphoses, or specialized structures promoting vegetative dispersal occupied a larger range when being facultative mycorrhizal. We conclude that being mycorrhizal is important for the persistence of aliens in Germany and constitutes an advantage compared to being non-mycorrhizal. Being facultative mycorrhizal seems to be especially advantageous for successful spread, as the flexibility of this mycorrhizal status may enable plants to use a broader set of ecological strategies.
It is debated whether alien plants in new environments benefit from being mycorrhizal and whether widely distributed natives and aliens differ in their associations with mycorrhizal fungi. Here, we compared whether species differing in their origin status, i.e. natives, archaeophytes (alien species introduced before the year 1500) and neophytes (introduced after the year 1500), and arbuscular mycorrhizal (AM) status (obligate, facultative, non‐mycorrhizal) differ in their area of occupancy in Germany (i.e. number of occupied grid cells, each ~130 km²). We used generalized linear models, incorporating main effects and up to three‐way interactions combining AM status, origin status and plant functional traits. The latter were chosen to describe the possible trade‐off in carbon allocation either towards the symbiosis or to other plant structures, such as storage organs (significant interactions involving traits were assumed to indicate the existence of such trade‐offs). AM status significantly explained the area of occupancy of natives and neophytes – with facultative mycorrhizal species occupying the largest area in both groups – but was less pronounced among archaeophytes. Archaeophytes may have reduced dependency on AM fungi, as they are generally agricultural weeds and the symbiosis potentially becomes obsolete for plants growing in habitats providing a steady provision of nutrients. Trait interactions between AM status and other functional traits were almost exclusively detected for neophytes. While facultative mycorrhizal neophytes benefit from trade‐offs with other traits related to high C cost in terms of area of occupancy, such trade‐offs were almost absent among natives. This indicates that natives and neophytes benefit differently from the symbiosis and suggests that native AM fungal partners might be less important for neophytic than for native plant species or that more time is required to establish similar relationships between neophytes and native fungal symbionts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.