Chronic inflammation has been implicated in the pathogenesis of many severe autoimmune disorders, as well as in diabetes, pulmonary diseases, and cancer. Inflammation accompanies most solid cancers including pancreatic ductal adenocarcinoma (PDAC), one of the most fatal cancers with surgery being the only curative therapeutic approach currently available. In the present work, we investigated the role of the major proinflammatory cytokine tumor necrosis factor A (TNFA) in the malignancy of PDAC cells in vitro and in vivo. In vitro, TNFA strongly increased invasiveness of Colo357, BxPc3, and PancTuI cells and showed only moderate antiproliferative effect. TNFA treatment of mice bearing orthotopically growing PDAC tumors led to dramatically enhanced tumor growth and metastasis. Notably, we found that PDAC cells themselves secrete TNFA. Although inhibition of TNFA with infliximab or etanercept only marginally affected proliferation and invasiveness of PDAC cells in vitro, both reagents exerted strong antitumoral effects in vivo. In severe combined immunodeficient mice with orthotopically growing Colo357, BxPc3, or PancTuI tumors, human-specific anti-TNF antibody infliximab reduced tumor growth and metastasis by about 30% and 50%, respectively. Importantly, in a PDAC resection model performed with PancTuI cells, we found an even stronger therapeutic effect for both anti-TNF compounds. Infliximab and etanercept reduced the number of liver metastases by 69% and 42%, respectively, as well as volumes of recurrent tumors by 73% and 51%. Thus, tumor cell-derived TNFA plays a profound role in malignancy of PDAC, and inhibition of TNFA represents a promising therapeutic option particularly in adjuvant therapy after subtotal pancreatectomy.
Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) and agonistic anti-DR4/TRAIL-R1 and anti-DR5/TRAIL-R2 antibodies are currently under clinical investigation for treatment of different malignancies. TRAIL activates DR4 and DR5 and thereby triggers apoptotic and non-apoptotic signaling pathways, but possible different roles of DR4 or DR5 in these responses has poorly been addressed so far. In the present work, we analyzed cell viability, DISC formation as well as IL-8 and NF-kappaB activation side by side in responses to TRAIL and agonistic antibodies against DR4 (mapatumumab) and against DR5 (lexatumumab) in pancreatic ductal adenocarcinoma cells. We found that all three reagents are able to activate cell death and pro-inflammatory signaling. Death-inducing signaling complex (DISC) analysis revealed that mapatumumab and lexatumumab induce formation of homocomplexes of either DR4 or DR5, whereas TRAIL additionally stimulated the formation of heterocomplexes of both receptors. Notably, blocking of receptors using DR4- and DR5-specific Fab fragments indicated that TRAIL exerted its function predominantly via DR4. Interestingly, inhibition of PKC by Goe6983 enabled DR5 to trigger apoptotic signaling in response to TRAIL and also strongly enhanced lexatumumab-mediated cell death. Our results suggest the existence of mechanisms that silence DR5 for TRAIL- but not for agonistic-antibody treatment.
P-glycoprotein (Pgp; ABCB1/MDR1) is a major efflux transporter at the blood-brain barrier (BBB), restricting the penetration of various compounds. In other tissues, trafficking of Pgp from subcellular stores to the cell surface has been demonstrated and may constitute a rapid way of the cell to respond to toxic compounds by functional membrane insertion of the transporter. It is not known whether drug-induced Pgp trafficking also occurs in brain capillary endothelial cells that form the BBB. In this study, trafficking of Pgp was investigated in human brain capillary endothelial cells (hCMEC/D3) that were stably transfected with a doxycycline-inducible MDR1-EGFP fusion plasmid. In the presence of doxycycline, these cells exhibited a 15-fold increase in Pgp-EGFP fusion protein expression, which was associated with an increased efflux of the Pgp substrate rhodamine 123 (Rho123). The chemotherapeutic agent mitomycin C (MMC) was used to study drug-induced trafficking of Pgp. Confocal fluorescence microscopy of single hCMEC/D3-MDR1-EGFP cells revealed that Pgp redistribution from intracellular pools to the cell surface occurred within 2 h of MMC exposure. Pgp-EGFP exhibited a punctuate pattern at the cell surface compatible with concentrated regions of the fusion protein in membrane microdomains, i.e., lipid rafts, which was confirmed by Western blot analysis of biotinylated cell surface proteins in Lubrol-resistant membranes. MMC exposure also increased the functionality of Pgp as assessed in three functional assays with Pgp substrates (Rho123, eFluxx-ID Gold, calcein-AM). However, this increase occurred with some delay after the increased Pgp expression and coincided with the release of Pgp from the Lubrol-resistant membrane complexes. Disrupting rafts by depleting the membrane of cholesterol increased the functionality of Pgp. Our data present the first direct evidence of drug-induced Pgp trafficking at the human BBB and indicate that Pgp has to be released from lipid rafts to gain its full functionality.
SignificanceLocated at the apical (blood-facing) site of brain capillary endothelial cells that form the blood–brain barrier (BBB), the efflux transporter P-glycoprotein (Pgp) restricts the brain entry of various lipophilic xenobiotics, which contributes to BBB function. Pgp may become saturated if exposed to too-high drug concentrations. Here, we demonstrate a second-line defense mechanism in human brain capillary endothelial cells—that is, Pgp-mediated intracellular lysosomal drug trapping. Furthermore, we describe a mechanism of drug disposal at the BBB, which is shedding of lysosomal Pgp/substrate complexes at the apical membrane of human and porcine BBB endothelial cells and subsequent phagocytosis by neutrophils. Thus, we have discovered a fascinating mechanism of how Pgp might contribute to brain protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.