We demonstrate the thermal conductivity enhancement of the vertically aligned carbon nanotube (CNT) arrays (from ∼15.5 to 29.5 W/mK, ∼90% increase) by encapsulating outer boron nitride nanotube (BNNT, 0.97 nm-thick with ∼3-4 walls). The heat transfer enhancement mechanism of the coaxial C@BNNT was further revealed by molecular dynamics simulations. Because of their highly coherent lattice structures, the outer BNNT serves as additional heat conducting path without impairing the thermal conductance of inner CNT. This work provides deep insights into tailoring the heat transfer of arbitrary CNT arrays and will enable their broader applications as thermal interface material.
As feature density increases within microelectronics, so does the dissipated power density, which puts an increased demand on thermal management. Thermal interface materials (TIMs) are used at the interface between contacting surfaces to reduce the thermal resistance, and is a critical component within many electronics systems. Arrays of carbon nanotubes (CNTs) have gained significant interest for application as TIMs, due to the high thermal conductivity, no internal thermal contact resistances and an excellent conformability. While studies show excellent thermal performance, there has to date been no investigation into the reliability of CNT array TIMs. In this study, CNT array TIMs bonded with polymer to close a Si-Cu interface were subjected to thermal cycling. Thermal interface resistance measurements showed a large degradation of the thermal performance of the interface within the first 100 cycles. More detailed thermal investigation of the interface components showed that the connection between CNTs and catalyst substrate degrades during thermal cycling even in the absence of thermal expansion mismatch, and the nature of this degradation was further analyzed using X-ray photoelectron spectroscopy. This study indicates that the reliability will be an important consideration for further development and commercialization of CNT array TIMs.
In this paper, an embedded fin-like metal-coated carbon nanotube (Fin-M/CNT) structure is demonstrated for flexible and transparent conductor wire applications. Embedded in a polydimethylsiloxane polymeric substrate, Fin-M/CNT wires with a minimum width of 5 μm and a minimum pitch of 10 μm have been achieved. Direct current resistances of single Fin-M/CNT wires, where the supporting CNT structures have been covered by Ti/Al/Au metal coatings of different thicknesses, have been measured. The high aspect ratio of the fin-like structures not only improves the adhesion between the wires and the polymeric substrate, but also yields a low resistance at a small surface footprint. In addition, transparent Fin-M/CNT grid lines with hexagonal patterns, with a sheet resistance of as low as 45 Ω sq(-1) , have been achieved at an optical transmittance of 88%. The robustness of the Fin-M/CNT structures has been demonstrated in bending tests up to 500 cycles and no significant changes in wire resistances are observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.