A major complication of hemophilia A therapy is the development of alloantibodies (inhibitors) that neutralize intravenously administered coagulation factor VIII (FVIII). Immune tolerance induction therapy (ITI) by repetitive FVIII injection can eradicate inhibitors, and thereby reduce morbidity and treatment costs. However, ITI success is difficult to predict and the underlying immunological mechanisms are unknown. Here, we demonstrated that immune tolerance against FVIII under nonhemophilic conditions was maintained by programmed death (PD) ligand 1 (PD-L1)-expressing regulatory T cells (Treg) that ligated PD-1 on FVIII-specific B cells, causing them to undergo apoptosis. FVIII-deficient mice injected with FVIII lacked such Treg and developed inhibitors. Using an ITI mouse model, we found that repetitive FVIII injection induced FVIII-specific PD-L1 + Tregs and re-engaged removal of inhibitor-forming B cells. We demonstrated the existence of FVIII-specific Tregs also in humans and showed that such Tregs upregulated PD-L1 after successful ITI.Simultaneously, FVIII-specific B cells upregulated PD-1 and became killable by Tregs. In summary, we showed that PD-1-mediated B cell tolerance against FVIII operated in healthy individuals and in hemophilia A patients without inhibitors, and that ITI re-engaged this mechanism. These findings may impact monitoring of ITI success and treatment of hemophilia A patients.
The neonatal Fc receptor (FcRn) is responsible for the recycling of endocytosed albumin and IgG and contributes to their long plasma half-life. We recently identified a FcRn-dependent, recycling pathway from macropinosomes in macrophages (Toh et al, 2019), however, little is known about the dynamics of intracellular FcRn-ligand interactions to promote recycling. Here we demonstrate a multiplexed biophysical fluorescent microscopy approach to resolve the spatiotemporal dynamics of albumin-FcRn interactions in living bone marrow-derived macrophages (BMDMs). We used the phasor approach to fluorescence lifetime imaging microscopy (FLIM) of Förster resonance energy transfer (FRET) to detect the interaction of a FcRn-mCherry fusion protein with endocytosed Alexa Fluor 488-labelled human serum albumin (HSA-AF488) in BMDMs, and Raster Image Correlation Spectroscopy (RICS) analysis of single fluorescent-labelled albumin molecules to monitor the diffusion kinetics of internalised albumin. Our data identified a major fraction of immobile HSA-AF488 molecules in endosomal structures of human FcRn-positive mouse macrophages and an increase in FLIM- FRET following endocytosis, including detection of FRET in tubular-like structures. A non-binding mutant of albumin showed minimum FLIM-FRET and high mobility. These data reveal the kinetics of FcRn-ligand binding within endosomal structures for recruitment into transport carriers for recycling. These approaches have wide applicability for analyses of intracellular ligand-receptor interactions.
Human serum albumin (HSA) has a long circulatory half-life owing, in part, to interaction with the neonatal Fc receptor (FcRn or FCGRT) in acidic endosomes and recycling of internalised albumin. Vascular endothelial and innate immune cells are considered the most relevant cells for FcRn-mediated albumin homeostasis in vivo. However, little is known about endocytic trafficking of FcRn–albumin complexes in primary human endothelial cells. To investigate FcRn–albumin trafficking in physiologically relevant endothelial cells, we generated primary human vascular endothelial cell lines from blood endothelial precursors, known as blood outgrowth endothelial cells (BOECs). We mapped the endosomal system in BOECs and showed that BOECs efficiently internalise fluorescently labelled HSA predominantly by fluid-phase macropinocytosis. Pulse-chase studies revealed that intracellular HSA molecules co-localised with FcRn in acidic endosomal structures and that the wildtype HSA, but not the non-FcRn-binding HSAH464Q mutant, was excluded from late endosomes and/or lysosomes. Live imaging revealed that HSA is partitioned into FcRn-positive tubules derived from maturing macropinosomes, which are then transported towards the plasma membrane. These findings identify the FcRn–albumin trafficking pathway in primary vascular endothelial cells, relevant to albumin homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.