Safe and reliable venous access is mandatory in modern health care, but central venous catheters (CVCs) are associated with significant morbidity and mortality, This paper describes current Swedish guidelines for clinical management of CVCs The guidelines supply updated recommendations that may be useful in other countries as well. Literature retrieval in the Cochrane and Pubmed databases, of papers written in English or Swedish and pertaining to CVC management, was done by members of a task force of the Swedish Society of Anaesthesiology and Intensive Care Medicine. Consensus meetings were held throughout the review process to allow all parts of the guidelines to be embraced by all contributors. All of the content was carefully scored according to criteria by the Oxford Centre for Evidence-Based Medicine. We aimed at producing useful and reliable guidelines on bleeding diathesis, vascular approach, ultrasonic guidance, catheter tip positioning, prevention and management of associated trauma and infection, and specific training and follow-up. A structured patient history focused on bleeding should be taken prior to insertion of a CVCs. The right internal jugular vein should primarily be chosen for insertion of a wide-bore CVC. Catheter tip positioning in the right atrium or lower third of the superior caval vein should be verified for long-term use. Ultrasonic guidance should be used for catheterisation by the internal jugular or femoral veins and may also be used for insertion via the subclavian veins or the veins of the upper limb. The operator inserting a CVC should wear cap, mask, and sterile gown and gloves. For long-term intravenous access, tunnelled CVC or subcutaneous venous ports are preferred. Intravenous position of the catheter tip should be verified by clinical or radiological methods after insertion and before each use. Simulator-assisted training of CVC insertion should precede bedside training in patients. Units inserting and managing CVC should have quality assertion programmes for implementation and follow-up of routines, teaching, training and clinical outcome. Clinical guidelines on a wide range of relevant topics have been introduced, based on extensive literature retrieval, to facilitate effective and safe management of CVCs.
Central venous catheters are used in various hospital wards. An anterior-posterior chest X-ray is usually obtained soon after cannulation to assess the location of the catheter tip. This prospective clinical study was designed to determine the radiographic catheter tip position after central venous cannulation by various routes, to identify clinical problems possibly associated with the use of malpositioned catheters and to make a cost-benefit analysis of routine chest X-ray with respect to catheter malposition. A total 1619 central venous cannulations were recorded during a three-year period with respect to patient data, information about the cannulation procedures, the radiographic catheter positions and complications during clinical use. The total incidence of radiographic catheter tip malposition, defined as extrathoracic or ventricular positioning, was 3.3% (confidence interval 2.5 to 4.3%). Cannulation by the right subclavian vein was associated with the highest risk of malposition, 9.1%, compared with 1.4% by the right internal jugular vein. Six of the 53 malpositioned catheters were removed or adjusted. No case of malposition was associated with vascular perforation, local venous thrombosis or cerebral symptoms. We conclude that the radiographic incidence of central venous catheter malpositioning is low and that clinical use of malpositioned catheters is associated with few complications. However, determination of the catheter position by chest X-ray should be considered when mechanical complications cannot be excluded, aspiration of venous blood is not possible, or the catheter is intended for central venous pressure monitoring, high flow use or infusion of local irritant drugs.
Inadvertent arterial catheterisation during central venous cannulation is associated with obesity, emergency puncture and lack of ultrasonic guidance and should be suspected on retrograde/pulsatile catheter flow or local haematoma. If arterial catheterisation is recognised, the catheter should be left in place and the patient be referred for percutaneous/endovascular or surgical management.
We undertook a review of studies comparing complications of centrally or peripherally inserted central venous catheters. Twelve studies were included. Catheter tip malpositioning (9.3% vs 3.4%, p = 0.0007), thrombophlebitis (78 vs 7.5 per 10,000 indwelling days, p = 0.0001) and catheter dysfunction (78 vs 14 per 10,000 indwelling days, p = 0.04) were more common with peripherally inserted catheters than with central catheter placement, respectively. There was no difference in infection rates. We found that the risks of tip malpositioning, thrombophlebitis and catheter dysfunction favour clinical use of centrally placed catheters instead of peripherally inserted central catheters, and that the two catheter types do not differ with respect to catheter-related infection rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.