Metal clusters embedded in ultracold helium nanodroplets are exposed to femtosecond laser pulses with intensities of 10(13)-10(14) W/cm2. The influence of the matrix on the ionization and fragmentation dynamics is studied by pump-probe time-of-flight mass spectrometry. Special attention is paid to the generation of helium snowballs around positive metal ions (Me(z+)He(N), z=1,2). Closings of the first and second helium shells are found for silver at N(1)=10,12 and N(2)=32,44, as well as for magnesium at N1=19-20. The distinct abundance enhancement of helium snowballs in the presence of isolated atoms and small clusters in the droplets is used as a diagnostics to explore the cage effect. For silver, a reaggregation of the clusters is observed at 30 ps after femtosecond laser excitation.
We report on the dynamics of ultrafast heating in cryogenic hydrogen initiated by a ≲300 fs, 92 eV free electron laser x-ray burst. The rise of the x-ray scattering amplitude from a second x-ray pulse probes the transition from dense cryogenic molecular hydrogen to a nearly uncorrelated plasmalike structure, indicating an electron-ion equilibration time of ∼0.9 ps. The rise time agrees with radiation hydrodynamics simulations based on a conductivity model for partially ionized plasma that is validated by two-temperature density-functional theory.
We investigate ultrafast (fs) electron dynamics in a liquid hydrogen sample, isochorically and volumetrically heated to a moderately coupled plasma state. Thomson scattering measurements using 91.8 eV photons from the free-electron laser in Hamburg (FLASH at DESY) show that the hydrogen plasma has been driven to a nonthermal state with an electron temperature of 13 eV and an ion temperature below 0.1 eV, while the free-electron density is 2:8 Â 10 20 cm À3 . For dense plasmas, our experimental data strongly support a nonequilibrium kinetics model that uses impact ionization cross sections based on classical free-electron collisions. The investigation of warm dense matter (WDM) is one of the grand challenges of contemporary physics [1]. WDM is a plasma state characterized by moderate-tostrong interparticle coupling which takes place at freeelectron temperatures of several eV and free-electron densities around solid density [1]. It is present in many physical environments, such as planetary interiors [2,3], gravitationally collapsing protostellar disks, laser matter interaction and particularly during the implosion of an inertial confinement fusion capsule [4]. While in the astrophysical context WDM exists under stable conditions, in the laboratory it is achieved only as a transient state bridging condensed matter and hot plasma regimes. Here, we report on the first investigation of the nonequilibrium transition of hydrogen from a liquid to a moderately coupled plasma on the fs time scale, induced by highly intense soft-x-ray irradiation. This is an important step towards the investigation of strongly-coupled plasmas which are within reach of current light sources such as the Linac Coherent Light Source (LCLS). Our measurement enables unprecedented direct tests of nonequilibrium statistical models beyond mean field theories in a regime where collision and relaxation processes are dominant [5][6][7].The use of x-ray scattering for the investigation of dense, strongly-coupled plasmas was successfully demonstrated in the past decade [5,[7][8][9][10][11]. This technique is the x-ray analog of optical Thomson scattering (TS) [12] and enables the experimental determination of plasma parameters in dense systems where optical light cannot penetrate. While previous experiments were carried out using highenergy laser facilities, the advent of soft-and hard-x-ray free-electron lasers (FELs) makes ultrashort high brightness beams available for this type of research [13,14]. This Letter reports on ultrafast heating of liquid hydrogen and TS measurement of dense plasma parameters using softx-ray FEL radiation. For the first time, nonequilibrium distributions are observed and the underlying relaxation dynamics are compared with kinetic models showing electron relaxation times in the order of 20 fs, thus, shorter than the pulse duration.The scattering taking place is collective TS, which is characterized by a spectrally blue and red shifted response due to collective electron motion, plasmons, and nearly elastic scattering due t...
Saturable absorption is a phenomenon readily seen in the optical and infrared wavelengths. It has never been observed in core-electron transitions owing to the short lifetime of the excited states involved and the high intensities of the soft X-rays needed. We report saturable absorption of an L-shell transition in aluminium using record intensities over 10 16 W cm −2 at a photon energy of 92 eV. From a consideration of the relevant timescales, we infer that immediately after the X-rays have passed, the sample is in an exotic state where all of the aluminium atoms have an L-shell hole, and the valence band has approximately a 9 eV temperature, whereas the atoms are still on their crystallographic positions. Subsequently, Auger decay heats the material to the warm dense matter regime, at around 25 eV temperatures. The method is an ideal candidate to study homogeneous warm dense matter, highly relevant to planetary science, astrophysics and inertial confinement fusion. Saturable absorption, the decrease in the absorption of light with increasing intensity, is a well-known effect in the visible and near-visible region of the electromagnetic spectrum 1 , and is a widely exploited phenomenon in laser technology. Although there are many ways to induce this effect, in the simplest two-level system it will occur when the population of the lower, absorbing level is severely depleted, which requires light intensities sufficiently high to overcome relaxation from the upper level. Here, we report on the production of saturable absorption of a metal in the soft X-ray regime by the creation of highly uniform warm dense conditions, a regime that is of great interest in high-pressure science 2,3 , the geophysics of large planets 4,5 , astrophysics 6 , plasma production and inertial confinement fusion 7 . Furthermore, the process by which the saturation of the absorption occurs will lead, after the X-ray pulse, to the storage of about 100 eV per atom, which in turn evolves to a warm dense state. This manner of creation is unique as it requires intense, subpicosecond, soft X-rays. As such, it has not hitherto been observed in this region of the spectrum, owing both to the lack of high-intensity sources, and the rapid recombination times associated with such high photon energies. However, with the advent of new fourth-generation X-ray light sources, including the free-electron laser in Hamburg 8 (FLASH), soft X-ray intensities that have previously remained the province of high-power optical lasers can now be produced. Experiments at such high intensities using gas jets have already exhibited novel absorption phenomena 9 , and the possibility of irradiating solid samples with intense soft and hard X-rays has aroused interest as a possible means of producing warm dense matter (WDM) at known atomic densities 10,11 .We present the first measurements of the absorption coefficient of solid samples subject to subpicosecond soft X-ray pulses with intensities up to and in excess of 10 16 W cm −2 , two orders of magnitude higher than could ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.