In this paper, we introduce a fast and lightweight method based on several combined filters to detect and track an object in images recorded by a moving camera. Assuming we know nothing about the intruders shape, color or other geometric appearance, we focus with our work on change detection in the image, caused by movement of the object against the background. The method is evaluated with image data from experimental flights with two unmanned aircraft performing different flight maneuvers. The correctness of the intruder detection is evaluated by comparison with hand labeled ground truth from different sequences of the test flight. Additionally, we evaluate the performance of our implementation on architectures with low computational power with regard to a practical onboard solution for small unmanned aerial vehicels (UAV).
Kurzfassung
Fahrerlose Transportfahrzeuge (FTF) sind ein wichtiger Bestandteil, um operative logistische Prozesse effizienter zu gestalten. Ein wesentliches Defizit von FTF ist ihr nicht-automatisierbares Verhalten in kritischen Betriebssituationen. Mit dem Ziel, dieses Defizit zu überwinden und die Wirtschaftlichkeit beim Einsatz von FTF weiter zu erhöhen, wird im IPH ein mobiles System entwickelt, das eine gesten-, blick- und sprachbasierte Interaktion zwischen einem Bediener und einem FTF ermöglicht.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.